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Chapitre 1

Applications différentiables, différentielle

1.1 Définitions

Définition 1.1.1. (Application différentiable). Soit E et F' deux espaces vectoriels normés sur R et
f+ E — F une application. Soit x € F, on dit que [ est différentiable en x s’il existe une application
L linéaire continue de I dans F telle que

o ) — fa) — L
h—0 1Al

Remarque 1.1.1. Une propriété immédiate mais qui peut étre utile : si on change la norme sur E en
une norme équivalente et si on change la norme sur F' en une norme équivalente, cela ne change pas
la notion de différentiabilité. Autrement dit une fonction différentiable en un point pour un choix de
norme sur I et sur I' le sera pour tout choix de normes équivalentes. De méme une fonction non
différentiable en x restera non différentiable si on change la norme sur E en une norme équivalente
et la norme sur F' en une norme équivalente.

Proposition 1.1.1. Avec les notations de la définition ci-dessus, si I’application L existe, elle est
unique.

=0.

Dém
Supposons qu’il existe L € L(E, F) et L1 € L(E, F) telles que

flz+h) — f(z) = L(h) flz+h) = f(z) = L (h)

o ol R Al "
Alors
tim 210 — L),
h—0 | Al
Prenons h = tw avec ¢t > 0 et ||w|| = 1, w fixé, et faisons tendre ¢ vers 0 . On a
Ly (tw) — L(t
0= tim L) = LUD) ) = L) = L) — L(w)

t—0 t t—0

Donc L et L, sont égales sur le sphere unité de E. Par linéarité, il suit que L, = L.

5
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Définition 1.1.2. Avec les notations de la définition 1.1, lorsqu’elle existe, I’application L s’appelle
la différentielle de f en x, ou encore I’application tangente a f au point x. On la note D f(x).
Proposition 1.1.2. Soit E et F' deux espaces vectoriels normés sur R,x € Fet f : E — F une
application différentiable en x, alors f est continue en x.

Preuve. On sait qu’il existe L € L(E, F') telle que

o J ) = f(x) = L)

=0
h—0 |12l

ce qui s’écrit encore de la facon suivante : il existe une application € : I/ — F’ satisfaisant

lime(h) =0

h—0

et telle que pour tout h € E, h # 0, on ait

f(x+h) = f(x) = L(h) + [|p]le(h).

Il suit par linéarité de L que

lim f(z+h) = [(2),

i.e. f est continue en .
Définition 1.1.3. Soit E et F' deux espaces vectoriels normés sur R, Q un ouvert de E, et f une
application de ) dans F.

1. Ondira que f est différentiable sur ) si elle I’est en tout point x de ().

2. Si f est différentiable sur (), on appelle application différentielle (ou simplement différentielle)
de f I'application D f qui a x € 2 associe D f(x) 'application tangente o.f au point x. La
différentielle D f est une application de ) dans L(E, F).

3. Ondira que f est de classe C* sur (Q si elle est différentiable sur ) et si D f est continue sur ),
c’est-a-dire

Vr € (), il_rf(l] |Df(x+y)— Df(x)“L<EF) =0
On rappelle que cette norme s’écrit

|Df(x +y)(h) = Df(x)(h)]r

IDf(z+y) — Df(x)”g(E,F) = Ssup

he B, h7£0 i
= sup  ||Df(z+y)(h) — Df(x)(h)|r
heE,||h| g=1

Remarque 1.1.2. Attention! L’application D f n’a aucune raison d’étre linéaire (sauf si f est
bilinéaire, nous verrons cela plus tard), c’est sa valeur en chaque point x qui est une application
linéaire continue.

Proposition 1.1.3. (Opérations sur les fonctions différentiables).

1. Toute combinaison linéaire de fonctions différentiables est différentiable et
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D(Af + pg)(x) = AD f(x) + pDg(x).
2. Composition : soit E, F' et G trois espaces vectoriels normés sur R, U un ouvert de I,V un

ouvertde I,z € U. Soit f : U — F une application telle que f(U) C V, soitg:V — G. Si f
est différentiable en x et g est différentiable en f(x), alors g o f est différentiable en x et on a

D(g o f)(x)(h) = Dg(f(x))(Df(x)(h)),

autrement dit

D(go f)(x) = Dg(f(x)) o Df(x).

Et il suit que si f est différentiable sur U et g sur V alors g o f est différentiable sur U.

Preuve
1. Trivial.

2. En utilisant le fait que f est différentiable en ,

go f(x+h)=g(f(x)+ Df(x)(h)+ [|hlle(h))

ot e(h) — 0 quand h — 0. La différentiabilité de g en f(x) nous donne alors

go f(x+h)=g(f(x)) + Dg(f())(Df(x)(h) +[[h]le(h))
+Df(2)(h) + [[Alle(h)[|E(Df () (h) + [|hlle(h))
=9(f(2)) + Dg(f(2))(Df(x)(h)) + Dg(f(x))([|hl[e(R))
+Df(2)(h) + [[Alle(h)[|E(Df () (h) + [|Alle(h))
=9(f(2)) + Dg(f(2))(Df(x)(h)) + |[h[|Dg(f (x))((R))
+Df(2)(h) + [[Rlle(h)l[E(D S (2)(h) + |hlle(R)),

ou £(k) — 0 lorsque k£ — 0. Donc

lg o f(x+h) = g(f(x)) = Dg(f (@)D (&) (R)]
< 18l (IDg(F @) EMDI+ (1D F@)2qe.r, + EB) IEDL@)H) + [l )

Par linéarité et continuité de Dg(f(x)), on a

Dg(f(z))(e(h)) — 0lorsque h — 0

et comme

E(Df(x)(h)+ ||h||le(h)) — 0 lorsque h — 0

il suit que



8 CHAPITRE 1. APPLICATIONS DIFFERENTIABLES, DIFFERENTIELLE

i 892 +1) = 9(f(@)) = Dyl () (DF ()(1)

=0
h—0 Al

Ceci conclut la preuve.

Corollaire 1.1.1. Soit I et F' deux espaces vectoriels normés sur R, U un ouvert de E et V' un ouvert
de F'. Soit f : U — V une application bijective. On suppose que f est différentiable en x € U et que
[~ Y est différentiable en f(x), alors D f(x) est un isomorphisme de E sur F et

D(f7) (f(x) = (Df(x)""

Démonstration
On applique la proposition précédente 2 Idg = f~1 o fet Idr = f o f~!, en remarquant que

On va maintenant voir la notion de dérivée directionnelle et son lien avec la différentielle.
Définition 1.1.4. (Dérivée directionnelle). Soit E et F' deux espaces vectoriels normés sur R, ) un
ouvert de F, et f une application de §) dans F. Soit x € E etv € E,v # 0. On appelle dérivée
directionnelle de f en x selon la direction v la dérivée en 0, si elle existe, de I’application

¢:teR— flx+tv)

on la note
or (z)
ov

Autrement dit

OF (1) oy L2 £ 10) = F(2)
v t—0 t
si elle existe. En effet,
¢'(0) = lim ¢(t) = ¢(0) si elle existe
t—0 t

et

o(t) —9(0) _ flz+tv) — f(z)

t a t

Lorsqu’une fonction est différentiable, elle admet des dérivées directionnelles dans toutes les
directions et on peut les calculer a I’aide de la différentielle.

Proposition 1.1.4. Soit E et F deux espaces vectoriels normés sur R, Q) un ouvert de E, x € Q et f
une application de ) dans F différentiable en x. Alors f admet en x des dérivées directionnelles dans
toutes les directions et pour toutv € E v # 0, on a

of

() = Df@)(w)
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Preuve. On sait que

f(x+h) — f(z) = Df(x)(h)

Gt 7] -0
Soitv € E,v # 0, en prenant h = tv,t € R,on a
— - D
| e+ t) = f@) = Df@)(te)
=0 tllvll
ce qui équivaut a
i S+ ) = f@) = Df@)w)

t—0 t

D’autre part, comme D f(x) est linéaire, D f(x)(tv) = tD f(x)(v). Il suit

lim
t—0

Ceci conclut la preuve.

Remarques

Une application peut admettre en un point des dérivées directionnelles dans toutes les directions et
pourtant ne pas €tre différentiable en ce point. On verra des exemples explicites de ce genre de
situation en dimension finie.

Voyons quelques exemples de calculs de différentielles.

- E=F=M,R), f(A) =1+ 2A.On développe f(A+ H):

FIA+ H)=T+2A+2H

On identifie la partie linéaire en H : on pose L(H) = 2H eton a

f(A+H) = f(A)+ L(H)

Donc en particulier

o S+ H) = £(4) — L()

=0
H-0 | H ||

Donc f est différentiable en tout point A de F et Df(A)(H) = 2H.

- F = F = M, (R) munis de la méme norme matricielle, f(A) = A% On développe f(A + H) en
n’oubliant pas que le produit matriciel ne commute pas :

fA+H)=(A+H)?*=A>+ AH + HA + H*.

On identifie la partie linéaire en H : on pose L(H) = AH + HAetona
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f(A+H)= f(A)+ L(H) + H?

il suit

HﬂA+H%JWU—MHw:HHQ <c|H|

IH]] I1H]]

car pour toute norme ||.||sur M., (R) il existe C' > 0 tel que

IAB] < ClAJIIBIIVA, B € Mn(R)

On a donc

o A+ H) = F(4) - L()

=0
H—0 | H ||

f est différentiable en tout point Ade E et Df(A)(H) = AH + HA.

1.2 Cas des applications linéaires continues

Proposition 1.2.1. Soit E et I’ deux espaces vectoriels normés sur R et L € L(E, F'). Alors L est
différentiable sur E et pour tout v € E on a

DL(z) =L

Démonstration
C’est un calcul direct

L(x+h) = L(z)+ L(h)+0

et 0 est bien de la forme ||2||e(h) avec e(h) — 0 quand A — 0.

121 Casou F =R

Proposition 1.2.2. On considere ici le cas ot E = R. Soit F' un espace vectoriel normé sur R et f
une application définie sur un ouvert U de R a valeurs dans F. Soit x € U, f est différentiable en x
si et seulement si elle est dérivable en x au sens usuel et dans ce cas, on a

Df(z):hw hf'(x)

On voit donc que la notion habituelle de dérivabilité pour les fonctions a une variable réelle est
exactement la méme chose que la différentiabilité. De plus pour ces fonctions la différentielle en un
point est I’application de multiplication par la dérivée de f en ce point.
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Preuve Supposons que f soit dérivable en x, alors on peut effectuer un développement de
Taylor-Lagrange de f al’ordre 1 en z :

f(x+h)= f(x)+hf'(x)+ he(h) ot e tend vers 0 en 0.

On voit que

o F ) = F(@) = b (@)

B0 |h] =0

et donc f est différentiable en x avec D f(x)(h) = hf'(z).
Supposons maintenant que f soit différentiable en x. Il existe une application L. € L(R, F') telle que

fl@+h)— fz) — L(h)

o ) =0
Mais L(h) = hL(1) car h € R et donc
po F@ ) — f@) — L)
h—0 |h’
Ceci est équivalent a (encore une fois du fait que h € R)
) = f@) —hLO)
h—0 h
et on a donc
h—0 h

Donc f est dérivable en z et f'(x) = L(1).

122 Casou I =R"

On se place dans le cas ou £/ = R" et F' est un espace vectoriel normé sur R. Soit U un ouvert de R”
et f : U — F une application. Soit z = (z1,...,x,) € U. On rappelle la définition des dérivées
partielles de fenx.

Définition 1.2.1. La dérivée partielle de f par rapport a la i-eme variable au point  est la dérivée
en 0, si elle existe, de ’application

tGR'—)f(l'l,...,l’i,hl’i—i—t,iﬂzqu,...,CCn>

on la note

af

Autrement dit,
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8f . f(l'l,...,l'i,1,$i+t,l'i+1,...,l'n)—f(l'l,...,$i,1,xi,$i+1,...,l‘n)
(z) = lim
ox; t—0 t

si cette limite existe.

On voit donc que la dérivée partielle de f par rapport a la i-eéme variable au point z est la dérivée
directionnelle de f en x selon le i-eme vecteur de base e; (ol {ey, ..., e, } est la base canonique de
R™), i.e.

af
oz, (z) = Je, ().

Donc en particulier, si f est différentiable en ,

of
8:61-

() = Df(x)(e;) = Df(x)(0,...,0,1,0,...,0) (le 1 étant a la i-eme place).

Comme la différentielle de f en z, si elle existe, est linéaire, il suit que nous connaissons sa forme :
on développe h € R" sur la base canonique

h:h1€1—|—...+hn6n

etona

N~y Of
_;ma

Nous venons de montrer la proposition suivante :

Proposition 1.2.3. Soit U un ouvert de R", x € U, F' un espace vectoriel normé sur Ret f : U — F
une application différentiable en x. Alors la différentielle de f en x s’écrit en fonction des dérivées
partielles de f en x de la facon suivante

Zth Zham (1.1)

Ceci nous donne un moyen pratique d’étudier la différentiabilité en un point d’une fonction définie
sur un ouvert de R".

Proposition 1.2.4. Soit U un ouvert de R", x € U, F un espace vectoriel normé sur Ret f : U — F
une application. Alors [ est différentiable en x si et seulement si

1. les dérivées partielles de f en x existent par rapport a toutes les variables ;

2. de plus

Fla+h) = ) = S bl (e)
h—0 | Al
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1.2.3 Casou £/ = R"”, F' = R, matrices Jacobiennes

Soit £ =R", F' =RP,Qunouvertde F,z € Qet f : O — F une application. On note fi, ..., f, les
composantes de f. Les dérivées partielles de f en z, si elles existent, sont les vecteurs de R” dont les
composantes sont les dérivées partielles des composantes de f :

ofi
ox;
of2
ox;
of .
E)xi N
o5,
ox;
On voit que si f est différentiable en z, on a
h
ho
DH@H) = 3 @) = @ | 12)
= O '
hn

ot J(f)(x) est la matrice Jacobienne de f en x, donnée par (les colonnes correspondent aux variables
par rapport auxquelles on dérive et les lignes aux composantes de la fonction)

Oh  Of
ox1 Oxo
9f2  Of2
8$1 8:22
J(f)(@) =

Ofp  Ofp
e
axn

L’étude de la différentiabilité de la fonction f en x peut donc se faire de la fagon suivante :

1. on commence par vérifier que les dérivées partielles en x de fi, fo, ..., f, existent par rapport a
toutes les variables ;

2. on vérifie ensuite que

o L) = @) = (D @)(R)

=0
h—0 |2l

ot (J(f)(x))(h) est J(f)(x) appliquée au vecteur colonne h (équation (1.2)).

La proposition suivante permet de ramener, si on le souhaite, I’étude de la différentiabilité de f a
celle de ses composantes.

Proposition 1.2.5. La fonction f est différentiable en x si et seulement si toutes ses composantes le
sont.
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Preuve. Supposons que f soit différentiable en z. La i-¢éme composante de f est donnée par

Ji=mio fou

T R = R (21, ... ,2p) = 25

Comme 7; est linéaire (et donc continue car R? est de dimension finie), elle est différentiable en tout
point, en particulier en f(x). Donc f; est différentiable en x comme composée de fonctions
différentiables.

Supposons maintenant que toutes les composantes de f soient différentiables en z, alors leurs
différentielles en = sont données par

D) (h) = h%(x)

Posons L(h) = (J(f)(z))(h) donné par I’équation (1.2) ; L est bien linéaire de R dans R” (et donc
aussi continue, car on est en dimension finie). La i-eme composante de f(x + h) — f(z) — L(h) est

filw+h)— Zh i) = fta+ 1)~ fia) — DR

et du fait que toutes les normes sur R? sont équivalentes,

If(x+h) = flx) = L(R)] < CZ |[fiw +h) = fi(x) = Dfi(x)(h)],

ou C' > 0 est indépendante de x et f. Il suit que

f(x +h) — f(x) — L(h) " | fi(x + h) — filx) — Dfi(x)(h)|
H Tl H S 1%l

et chaque terme de la somme tend vers 0 lorsque / tend vers 0 du fait que les f; sont toutes
différentiables en x.

1.2.4 Cas des applications multilinéaires continues

Dans ce paragraphe, nous allons travailler avec des espaces produits. Si £, )5 sont des espaces
vectoriels normés sur R, nous munirons £; X Fy d’une des normes équivalentes suivantes

1/
1z, )l = (2l + lyll,) " p € [1, 400
(2, ) |loo = max ([|z]| z,, [yl £,)

De méme, si E, Es, ..., E, sont des espaces vectoriels normés sur R, nous munirons
Ey x Ey x ... x E, d’une des normes équivalentes suivantes
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)P p e (1, 400,

(@1, 22, za)ll, = (ol + N2l + -+ 2,
H(wlax?v s 7xn)Hoo = mnax (HleEl ) ||x2||E2 IR HanEn)

Définition 1.2.2. (Application bilinéaire). Soit F, E5, F' des espaces vectoriels normés sur R. Une
application f : Ey x Ey — F est dite bilinéaire si elle est linéaire par rapport o chacun de ses
arguments, i.e. si pour tout y € Fs, ’application

¢1:x € By f(z,y) (1.3)

est linéaire de E| dans F' et pour tout x € E1, 'application

$2:y € Ex = f(z,y) (1.4)

est linéaire de 5 dans F.

On a pour les applications bilinéaires un résultat de continuité analogue a celui des applications
linéaires.

Théoreme 1.2.1. Avec les notations de la définition ci-dessus, une application bilinéaire f est
continue si et seulement si

3C > 01.q. Y(z,y) € By x By, ||f(z,y)llr < Cllz||zlylle.. (1.5)

Preuve. C’est évident si on remarque que f : £y X Fy — F est bilinéaire continue si et seulement si

V:x € B — (y€ By f(r,y))

est linéaire continue de ) dans L(Es, F).

Définition 1.2.3. (Application n-multilinéaire). Soit F\, Es, . .., E,, F des espaces vectoriels normés
sur R. Une application [ : Fy X Fy x ... X E,, — F est dite n-multilinéaire si elle est linéaire par
rapport a chacun de ses arguments, i.e. pour touti € {1,2,...,n}, pour tout

rn€FEy,...,x; 1€ B 1,241 € Eiyq, ..., 1, € B, Uapplication

Gi i € By f (21,0, @1, 04, Tigr, ., Tp) (1.6)

est linéaire de E; dans F'.

On a pour ces applications un résultat de continuité similaire qui se démontre comme le cas bilinéaire
mais avec une succession de n applications au lieu de 2.

Proposition 1.2.6. Avec les notations de la définition ci-dessus, une application n multilinéaire f est
continue si et seulement si il existe C' > 0 tel que

1f (@1, zn)llp S Cllaillg, - wallg, YV (21,..20) € By X X By (1.7)

On peut montrer facilement qu’une application n-multilinéaire continue est différentiable et sa
différentielle se calcule tres simplement. On commence par traiter le cas bilinéaire.
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Proposition 1.2.7. Soit F, Es, F' des espaces vectoriels normés sur R et f : Fy X E5 — F une
application bilinéaire continue. Alors f est différentiable sur F, X E5 et

Df(z,y)(h, k) = f(z,k) + f(h,y)

Preuve. On développe f((z,y) + (h, k)) :

f((z,y) + (h, k) = f(z + b,y + k)
= f(z,y) + (2, k) + f(h,y) + f (R, F).

Lexpression f(z, k) + f(h,y) est linéaire continue en (h, k) pour chaque (x, y), on pose donc
L(h,k) = f(x, k) + f(h,y). On a alors

Hf<x+ byt k) — Fe,y) — LK) H ) H £, k)
1)l OB
IBIEL _ G IR
< mmls = CTr, ~ MRl
On a donc

i J@thy+ k)~ flay) — L(h k)

-0
(hok)—(0,0) (R, k)2

ce qui conclut la preuve.
On a un résultat similaire dans le cas multi-linéaire. La preuve est laissée en exercice.
Proposition 1.2.8. Soit F\, Es, ..., E,, F des espaces vectoriels normés sur R et

fiEyxFEyx...xE, = F
une application n-multilinéaire continue, alors f est différentiable sur E1 X FEy X ... X E, et

Df ($1,I2, . ,%n) (hl, hg, cey hn) = f (hl,xg, ce ,J}n)—Ff (.Cl}l, hg, R 7'Tn)+ . —|—f (.ﬁl}l,IQ, e hn)

ce qu’on peut aussi écrire

Df (ZL’I,J]Q, ce 7[En) (hhhg, .. 7hn) = Zf(.l’l, e ,Ii_l,hi,l‘“_l, e ,ZEn)
i=1

1.2.5 Applications a valeurs dans un produit

Proposition 1.2.9. Soit E, F, ..., F,, des espaces vectoriels normés sur R, Q) un ouvert de E, x € )
et

fiE—Fy xFy,x...xF,

une application. On notera fi, fo, ..., fn les composantes de f, i.e. chaque f; est une application de
E dans F;. Alors | est différentiable en x si et seulement si chacune des f; est différentiable en x,
auquel cas on a
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Df(z)(h) = (D fi(x)(h), Dfa(x)(h),. .., Dfu(x)(h))

Preuve. Pour montrer ce résultat, on prend la norme ||.||; sur F} x Fy X ... X F, pour simplifier les
calculs. Supposons que les f; sont toutes différentiables en x, on pose

L(h) = (D fi(x)(h), D f2(z)(h),..., Dfulx)(h))

Ona

— f(x) = LW
il

If (@ +h) = fl@) = LW _ ~ If@+h)
7] _;

et ceci tend vers 0 quand A — 0. La réciproque est tout aussi simple. On note ; la projection de
Fi x Fy x ... x F,sur F;,ona

fi=miof

L application 7; est linéaire continue donc différentiable et Dr;(x) = ;. Si on suppose que f est
différentiable en x, il suit que f; I’est aussi et de plus

Dfi(x) = (Dmi(f(x))) o Df(x) = mio Df(x)

On a donc bien
Df(x)(h) = (Dfi(x)(h), Dfa(x)(h),...,Df.(z)(h))

1.2.6 Applications a valeurs dans R ou une algébre normée sur R

Définition 1.2.4. (Algebre normée sur R ). Un espace vectoriel normé ( E, ||.||)surR est appelé une
R-algebre normée s’il est de plus muni d’une loi interne de multiplication telle que

eyl < ll=lll[yll, Ve, y € E (1.8)
(xy)z = x(yz),Vo,y,z € £
(x4+y)z=xz+yz,z(y+2) =2y +axz,Vr,y,z€ E
(az)y = z(ay) = azy,Va € K z,y € F

Une R-algebre normée est dite :

— commutative si xy = yx pour tout x,y € E;

— unitaire s’il existe un élément x € F tel que xy = yx = y pour touty € E.

Exemples 1.2.1. — R ou C sont des R-algebre normées commutatives et unitaires.

— M, (R) muni d’'une norme vérifiant la propriété d’algeébre est une R-algébre normée unitaire et
non commutative.

— Tun intervalle compact de R, C(I) est une R-algébre normée unitaire et commutative.
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— Co(R), ensemble des fonctions continues sur R a valeurs réelles et tendant vers 0 a I'infini est une
R-algebre normée commutative et non unitaire.

Proposition 1.2.10. Soit A une R-algebre normée, E un espace vectoriel normé sur R, ) un ouvert

de E,x € Q et f et g deux applications de ) dans A. On suppose que [ et g sont différentiables en x,

alors f g est différentiable en x et

D(fg)(x)(h) = (Df(x)(h))g(x) + f(x)Dg(x)(h)

Preuve. On a

fx+h) = f(z)+ Df(x)(h) + [[hller(h),
9(x +h) = g(x) + Dg(x)(h) + [|hlle2(R),

ol £1(h) et eo(h) tendent vers 0 lorsque h — 0. Il suit que

[+ h)g(z +h) = (f(x) + Df(x)(h) + [[hlle(h)) (g(x) + Dg(x)(h) + [hlle2(h))
=f(@)g(x) + (Df(x)(h))g(x) + f(x)Df(x)(h)
+ Df(x)(h)Dg(x)(h) + |[hl| f()ea(h) + [hller(h)g(x)
+ [|h]|*e1 (h)e2(h)

La propriété d’algebre ainsi que le fait que D f(z) et Dg(x) sont linéaires continues, impliquent que

1D f (@) (h) Dg(a)(h) + Ik ]| f (@)e2(R)+]| 2 ller (R)g (@) +[| b || *er (h)ea(h)]|
< ClRI* + 120 (L @) e+ llesBHTg(@)) + 1AL [lex (A le2(A)]]

et donc que

i 1PS @) () Dy () (h) + |k || f ()2 () H]| R ller(R)g (@) ][ 7 a1 (M)ea(R)]]
h—0 | Al

Proposition 1.2.11. Soit E un espace vectoriel normé sur R, ) un ouvert de E,x € Q) et f et g deux
applications de ) dans R. On suppose que f et g sont différentiables en x et que g(x) # 0. Alors il
existe U C Q ouvert de E tel que 1/g et f /g soient définies sur U. De plus 1/g et f /g sont
différentiables en x et

D i - Pa@h) o (N o f@)Dg(@)(h) - g(x)Df () (h)
p(2) @ (D em o |

=0.

Preuve. Laissée en exercice.



Chapitre 2

Théoreme des accroissements finis

2.1 Le théoreme

Commencgons par €énoncer un premier théoreme avec des fonctions définies sur un intervalle de R.
Théoréme 2.1.1. Soit E un espace vectoriel normé sur R. Soit [a, b](a < b) un intervalle compact de
R. Soit f : [a,b] — E et g : [a,b] — R deux applications continues sur [a, b] et dérivables sur ]a, b|,
telles que pour tout x €|a,b|, || f'(z)|] < ¢'(x). Alors,

1(b) = fla)|| < g(b) — g(a)

Preuve. On va montrer que pour tout € > 0 on a

1£(b) = Fla)ll < g(b) — g(a) +e(b—a) +e

ce qui établira le théoreéme car € est aussi petit qu’on veut. Pour cela on considere pour € > 0 donné
I’ensemble A des x € [a, ] tels que

1 f(x) — fla)|| > g(x) — g(a) + e(x — a) +&.

Si A est vide, la preuve est terminée. Supposons donc que A # (). Comme ¢ est donné et strictement
positif, par continuité de f et g il existe > 0 tel que [a,a + n] N A = (). Donc A est non vide (par
hypothese) et minoré par a. Il admet donc une borne inférieure notée c. On a a < ¢ d’apres ce qui
précede. De plus ¢ ¢ A. En effet, A est défini par une inégalité stricte entre fonctions continues, donc
A est ouvert. Il suit que si ¢ € A alors tout un voisinage de ¢ sera dans A, ce qui contredit le fait que ¢
soit la borne inférieure de A. De méme ¢ < b car sinon on aurait A = {b} et ¢ = b serait dans A. On a
donc ¢ €la, bl et comme ¢ ¢ Aona

1f(c) = fla)l < g(c) —gla) +e(c —a) +¢

De plus

17 () < g'(c)

Ecrivons que f et g sont dérivables en c :

19
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fle+h)=f(c)+hf'(c)+|hlei(h)
glc+h) = g(c) + hg'(c) + |h|ea(h)

ol £1(h) et e5(h) tendent vers O lorsque h — 0. Nous allons montrer que pour i > 0 assez petit,
¢+ h ¢ A, ce qui contredira le fait que ¢ = inf A. Pour h > 0, on a

[f(c+h) = fla)ll < [1f(e+h) = )l +[1f(c) = fla)ll
< h (17N + llex() + g(c )—g(a)+€(c—a)+€
< h(g'(c) + les(W)D) + g(c) — g(a) +(c —a) +
< h(lles(W)l = e2(h)) + gle + h) = g(a)+€(c—a)+€

Et comme €1 (h) et e5(h) tendent vers O lorsque i — 0, on peut choisir hg assez petit pour que pour
tout h €]0, ho| on ait

lex(h)l —e2(h) < e

Il suit qu’il existe hy > 0 tel que pour tout h €] 0, ho|,

[f(c+h) = fla)l <glc+h)—gla) +elc+h—a)+e
i.e. Jc,c¢+ ho) M A = (). On a une contradiction. Donc A = ().
Le théoreme des accroissements finis est maintenant un résultat a peu pres immédiat.
Théoreme 2.1.2. (Inégalité des accroissements finis). Soit E et F' deux espaces vectoriels normés sur

R, Q2 un ouvert de E et f une application différentiable de €} dans F. Soit x,y € ) tels que le
segment [x,y| soit inclus dans ). Alors

1F () = f@)] < lly — 2|l sup [[DF(2)ll 2 )

2€[zy]

Preuve. On paramétre le segment [z, y] de la fagon usuelle

[I7y] = {ZL‘ +t(y - :B)?t € [07 1]}

On note

k = sup ||Df(z)||£(EF)

z€|z,y|

Si k = 400, le théoreme est trivial. On suppose donc que £ < co. On définit les deux fonctions
suivantes :

¢:[0,1] = Fo(t) = flz + iy — )
2 [0,1] = R, ¢p(t) = klly — x|t

Elles vérifient bien les hypotheses du théoreme 2.1. En effet
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1"l = I1Df(x +ty —2))(y —)|lr
<IPflx+ty = 2Dl 2 ppy Iy = 2)llm

< klly — x|l = ¢'(2)

On a donc

l6(1) = B(0)]] < (1) —4(0)

et le théoréme est démontré.

A noter que dans le cas des fonctions définies sur un ouvert d’un espace vectoriel normé sur R a
valeurs dans R, on peut montrer une égalité des accroissements finis qui est une conséquence directe
de I’égalité des accroissements finis usuelle.

Théoreme 2.1.3. (Une égalité des accroissements finis). Soit E un espace vectoriel normé sur R, 2
un ouvert de F/, f une application de () dans R différentiable dans ). Soit x,y € € tels que le
segment [x,y| soit inclus dans ). Alors il existe z €]z, y| tel que

fly) = f(z) = Df(2)(y — x)

Preuve. On considere 1’application

¢:[0,1] = R, o(t) = flz +t(y — 7))

Elle est dérivable sur [0, 1], donc par 1’égalité des accroissements finis usuelle, il existe ¢ €]0, 1] tel
que

On pose z = x + ¢(y — ) et on a le résultat.

2.2 Applications

2.2.1 Classe C! et dérivées partielles

Dans le cas ou £ = R", ’égalité (1.1) donne une caractérisation simple de la classe C! en fonction
des dérivées partielles, que 1’'inégalité des accroissements finis va nous permettre de démontrer.
Proposition 2.2.1. Soit U un ouvert de R"™, F' un espace vectoriel normé sur Ret f : U — F une
application. Alors f est de classe C sur U si et seulement si les dérivées partielles de f par rapport a
toutes les variables existent en tout point de €} et sont continues sur €.

Preuve. On note {e1, ..., e, } la base canonique de R™. Si f est de classe C' sur U alors les dérivées
partielles de f par rapport a toutes les variables existent en tout point de U et sont données par

of
axi

() = Df(z) (&)

Pour x, y € Q) assez proches pour que [z,y] C U, ona
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Donc la continuité de D f sur U entraine celle des dérivées partielles.
Supposons maintenant que les dérivées partielles de f par rapport a toutes les variables existent en
tout point de €2 et soient continues sur U. Alors I’application

of of
- o)

= Df(y) (e)) = Df(x) (el < [IDf(y) = D @)l £ gn

N, o

est linéaire de R™ dans F', et donc aussi continue car R" est de dimension finie. De plus I’application
x +— L, est continue de U dans £ (R", F'). En effet pour z,y € () assez proches pour que [z,y] C U,
ona

- 8f af
of
9. W)~ g (@)

— O lorsque y — =
F

Il reste donc simplement 2 montrer que f est différentiable en tout point x de U et que D f(z) = L,.
Pour z € U et p > 0 tel que B(z, p) C U.Pour h € B(z,p),ona

n

fla+h) = fz) =) (f (@ +h,omn+ i, 2, 2)

k=2
—f (:El +h1,...,l‘k_1+hk_1,xk,...,1}n))
+f($1+h1,l'2,...,$n>—f(xl,...,l'n)

Pour simplifier, on notera cela
fla+h) = f@) =Y (f (@ +h,. .z + by, Tps, - T)
k=1
_f (xl + hla cey Tp—1 T hk’—laxk’a s 7xn))
Il suit donc que

fla+h) - Zhaf =3 (6 () — 4(0)),

k=1

Or(t) = f(xr+hy, oo ok + A1, Tk 6 Thg, oo, Ty) — ta7(:c)
k

Par I’inégalité des accroissements finis, on a
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[0k (he) = Gr(O)[| < My [

0
a. ($1 + hl, R hk—lyﬁk + t,l’k_,_l, . ,xn) — a—f(x)
Ty

M, = sup o
k

te[0,hg]

On en déduit que (en prenant la norme ||.||o sur R™ et en utilisant Cauchy-Schwartz)

n 1/2
< |n| (Z Mi)
F k=1

Comme par continuité des dérivées partielles de f sur U les M), tendent vers 0 quand i — 0, on
obtient bien que f est différentiable en tout point x de U et que D f(z) = L,.

Hf(:v+ B — f(z) — thj—f()

2.2.2 Un théoreme de point fixe

Théoreme 2.2.1. Soit F un espace de Banach et f : E — FE une application. On suppose qu’il existe
k €10, 1] tel que pour tout x € E,

HDf(x)HL(E) <k

Alors [ admet un unique point fixe dans E, i.e. il existe un unique x € E tel que f(z) = .

Preuve. Commencons par montrer 1’unicité. Supposons qu’il existe deux points fixes distincts = et y
de f. C’est-a-dire qu’on a

f@)=z,fy)=y,x#vy

Ceci est impossible car I’'inégalité des accroissements finis nous donne

1 () = F@)| < Elly = =ll <y — ]l = [[/(y) = f(@)l]

C’est absurde.
Pour montrer 1’unicité, considérons la suite ( u,, ) dans £ définie par

up = 0, Un1 = f (un)

Cette suite converge si et seulement si la série

E Uny,Un = Up — Up—1

neN*

est convergente. Or d’apres les théoreme des accroissements finis, on a

[t = [l = [1f (1) = f (un2]| < Elltn1 = s ||[< . <E7H ur — o]
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Comme k € [0, 1], 1a série est absolument convergente et donc convergente du fait qu’on est dans un
espace de Banach.
Remarque On peut énoncer un théoréme analogue pour f : 2 — ) ou €2 est un ouvert convexe de F.



Chapitre 3

Différentielles secondes et supérieures

3.1 Différentielles secondes

Notation. Etant donnés E et F' deux espaces vectoriels normés sur R, on notera Ly, (Ek; F ) I’espace
des applications k-multilinéaires continues de ¥ x E' x ... x F ( k fois) dans F'.

Définition 3.1.1. Soit F et F deux espaces vectoriels normés sur R, ) un ouvert de E, v € () et

f :Q — F une application. On dira que f est deux fois différentiable en x si elle est différentiable au
voisinage de x et si l’application x — D f, définie au voisinage de x et a valeurs dans L} F), est
différentiable en x. On notera D? f(z) la différentielle de D f au point x. De fagon analogue, on dira
que f est deux fois différentiable sur ) si [ est différentiable sur ) et I’application x — D f(x),
définie sur ) et a valeurs dans L(E; F ) est différentiable sur Q). On notera D*f la différentielle
seconde de f, i.e. la différentielle de D f.

En chaque point x ou elle est définie, la différentielle seconde de f est une application linéaire
continue de £ dans £(E; F). On a une identification canonique entre £(E; L(E; F)) et
Lo(E x E; F), espace des applications bilinéaires continues de £/ x F dans F'. Plut6t que de
considérer

D*f(z) + he (k= Df(x)(h)(k)),

on notera D? f(z)(h, k). Evidemment on pourrait craindre que 1’isomorphisme canonique ci-dessus
ne le soit en fait pas : on aurait en effet pu poser D? f(x)(h, k) := D?f(x)(k)(h) au lieu de
D?f(x)(h)(k). Cela n’a en fait aucune importance comme le montre le théoréme de Schwarz.
Théoreme 3.1.1. (de Schwarz). Soit E et F' deux espaces vectoriels normés sur R, Q) un ouvert de
E .z €Q, f:Q — F une application 2 fois différentiable en x. Alors

flx+h+k)— f(x+h)— flx+k)+ f(z) — D*f(x)(h, k)

lim = 0.
(h k)= (0,0),(h,k)EEX ([[A]l + [I&]l)?

11 suit en particulier que D? f(x) est une application bilinéaire continue symétrique, i.e.

D?f(x)(h, k) = D*f(x)(k, h)¥(h,k) € E x E
Preuve. Soit ¢ > 0. Comme D f est différentiable en z, il existe 6 > 0 tel que, pour ||2|| < 2J on ait

25
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|Df(z+h) = Df (@) = D*F@) (D) £ gy < ElID] (3.1)
Soit h et k de normes inférieures a 6. On pose

gu(k) = f(z +h+k) = f(z+h) = flz+k) + f(z) = D*f(z)(h, k)

En utilisant ce qu’on a vu sur la différentielle d’une application linéaire continue, il vient

(
=[Df(x+h+k)— Df(x) — D*f(z)(h+ k)]
— [Df(z+k) — Df(x) — D* f(x) (k)] .

En utilisant (3.1), il suit pour ||| < d et ||k|| < 9,
1Dgr(R)| £ gy < (IR + K[+ [E]]) < 2e([[R]] + [I£]])

On applique alors le théoreme des accroissements finis a g, dans le segment [0, k] avec ||k|| < 0 et
pour ||A|| < é. Comme g, (0) = 0,

lgn(R)I < 2=(l[All + [IkDIIE] < 2e([A] + [11)*

On a donc établi la premiere partie du théoreme. Fixons maintenant / et k£ dans £. On a

fla@+th+tk) — f(z +th) — f(x + th) + f(x) — D2f(x)(th, tk)

0= lim

t0,6>0 ([[th]l + [[t&[])?
. fla+th+tk) — f(z +th) — f(z + tk) + f(z) — 2D%f(z)(h, k)
150,620 2([|[ + [1&]])?
= ( poy St th A th) — flatth) — f(x + th) +f(w)> _ D*f(z)(h, k)
150,450 e2([[r| + | &])? (Il + 1%

On obtient donc

D f() (k) = i L@ AR = f@tth) = fo 4 th) + /(@)

t—0,t>0 12

et comme I’expression dans la limite est symétrique en ( h, k ), il suit que D?f(x)(h, k) I’est
également.

3.2 Différentielles d’ordre supérieur

De proche en proche on définit les différentielles successives d’une application, si elles existent. On
dira que f est k fois différentiable en x si elle est k — 1 fois différentiable dans un voisinage de x et si
I’application D*~1 f est différentiable en x. On notera alors D f(z) sa différentielle. On la
considérera comme une application k-multilinéaire continue de E* dans F, i.e. un élément de

Ly, (Ek; F ) , plutdt que comme un élément de
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LELE;. .. LE; F)))

On a une version du théoreme de Schwarz pour les dérivées d’ordre supérieur.

Théoreme 3.2.1. (Généralisation du théoreme de Schwarz). Soit E et F deux espaces vectoriels
normés sur R, Q un ouvertde E,x € Q), f : Q0 — F une application k fois différentiable en x. Alors
D¥f(x) € Ly, (Ek; F ) est une application k-linéaire continue symétrique, i.e. pour toute permutation
sde{l1,2,... k},

Dkf(‘r) (hh h?; teey hk‘) = Dkf(w) (hs(l)a hs(2)7 feey hs(k)) ) \V/(hh h?; sty hk‘) € Ek

Preuve. Par récurrence. La propriété est vraie pour £ = 2. Supposons qu’elle le soit pour
2<p<k,k>2donné. Ona

D" f(2) = DD*f(x)
et D* f est a valeurs dans £;"™ (Ek; F), espace des applications k-linéaires continues symétriques de
E* dans F. Donc si la permutation s de {1,2, ...,k + 1} laisse 1 invariant, le résultat est vrai. Si elle
ne laisse pas 1 invariant, elle est la composée de permutations laissant 1 invariant et de la permutation
qui ne fait qu’échanger 1 et 2 en laissant 3, ..., k + 1 fixes. Il suffit donc de prouver que

Dk+1f(33) (hl, hg, hg, cey hk—i—l) = Dk+1f($) (hg, hl, hg, ceey hk:—i—l)

Mais comme D**!f = D2D*1f, cette propriété découle du théoréme de Schwarz.

Définition 3.2.1. Soit F et F' deux espaces vectoriels normés sur R, ) un ouvertde F et f : Q) — F
une application. On dit que f est de classe C* dans ) (ou encore que f € C*(QY) ) pour k € N*, si
elle admet des différentielles successives jusqu’a l’ordre k et si elles sont toutes continues sur ). On
dira que f est de classe C° sur Q) (ou encore que f € C°(Q) ) si elle est continue sur ). On dira que f
est de classe C* sur Q) (ou encore que f € C>®(Q) ) si elle est de classe C* sur Q pour tout k € N.
Remarque 3.2.1. Comme différentiabilité implique continuité, f est de classe C* dans  si et
seulement si elle admet des différentielles successives jusqu’a I’ordre k et si D* f est continue sur (.
De méme f est de classe C* dans () si et seulement si elle admet des différentielles successives a tous
les ordres en tout point de €). On voit aussi que si k > 1,

feck)= fec()

3.21 CasouF =R"

Dans cette situation, on peut donner une expression de différentielles k-ieme en fonction des dérivées
partielles d’ordre & de la fonction.

Proposition 3.2.1. Soit Q) un ouvert de E = R", ' un espace vectoriel normé sur Ret f :  — F
une application. Si f est k fois différentiable en un point x de (), alors elle admet au voisinage de x
toutes les dérivées partielles jusqu’a ’ordre k — 1 et en x toutes les dérivées partielles d’ordre k. De
plus la différentielle k-ieme de f en x s’écrit

n

k 1 kY 1 k_ ~ZJ
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Preuve C’est une conséquence directe de 1’expression de la différentielle de f en fonction de ses
dérivées partielles. On peut raisonner par récurrence en appliquant ce résultat a chaque étape.

On a aussi un caractérisation du fait qu’une fonction soit C* en fonction de la continuité de ses
dérivées partielles k-iemes.

Proposition 3.2.2. Soit Q) un ouvert de E = R", F' un espace vectoriel normé sur Ret f :  — F
une application. Alors f est C* sur () si et seulement si elle admet en tout point de ) des dérivées
partielles par rapport a toutes les variables jusqu’a ’ordre k et ses dérivées partielles d’ordre k sont
toutes continues sur €.

Preuve. On applique par récurrence la caractérisation des fonctions de classe C! en termes de
continuité de leurs dérivées partielles.

3.3  Quelques exemples

Voici quelques exemples de dérivées successives. Les vérifications sont de bonnes applications du
cours et peuvent étre traitées en exercices.

3.3.1 Application bilinéaire continue

Soit E, F' et G trois espaces vectoriels normés sur R et f : £/ X F' — (G une application bilinéaire
continue. Alors f € C*(E x F) et

Df(l’,y)(h, k) = f(l’, k) + f(hv y)7
sz(x>y) ((hlv kl) ) (h27 kZ)) = f (h2> kl) + f (hlﬁ kQ) )
D*f = 0pour k > 3.

3.3.2 Application quadratique continue

Soit E et F deux espaces vectoriels normés sur R sur R, ¢ : E? — F une application bilinéaire
continue. On définit I’application quadratique ¢ : £ — F' par q(x) = ¢(x,x). Alors ¢ € C*(F) et

Dq(z)(h) = ¢(z, h) + ¢(h, ),
D2Q(I)(h7 k) = ¢(l€v h) + ¢(hv k)7
D*q = 0 pour k > 3.

3.3.3 Application multilinéaire continue

Une application n-multilinéaire continue entre des espaces vectoriels normés sur R :

Eyx By x...x E,et FestC®sur B X Fy x ... x E, ettoutes ses dérivées d’ordre k > n + 1
sont nulles. On pourra "s’amuser" a trouver 1’expression de ses dérivées successives d’ordres
inférieurs ou égaux a n.
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3.4 Formules de Taylor

On rappelle tout d’abord le résultat essentiel qui est a la base des formules de Taylor avec reste
intégral :

Théoreme 3.4.1. (Théoreme fondamental du calcul différentiel). Soit F un espace de Banach,
¢ : [a,b] — F une application de classe C"*' sur [a, b]. Alors

o(b) = d(a) + / o)t

Théoreme 3.4.2. (Formule de Taylor avec reste intégral). Soit E un espace vectoriel normé sur R et
F un espace de Banach sur R, Q) un ouvert de E et f : Q) — F une application de classe C"* sur Q.
Soit x € Q et h € E tels que le segment [x,x + h] soit contenu dans ). Alors

Flo+h) =f(x) + Df(x)(h) + %DQf(x)(h, B+ ..+ %D”f(x) (hi ... h)
n fois

(1 —t)"D"* f(z +th) (h,h,..., h)dt.
—_—————

n—+1 fois

1
T
n! Jo

Théoreme 3.4.3. (Formule de Taylor avec reste de Lagrange). Soit E et F' deux espaces vectoriels
normés sur R, Q) un ouvert de E et f : Q) — F une application n + 1 différentiable sur ). On suppose
qu’il existe C' > 0 telle que

HDnJrlf(y)Han(EnH;F) < C pour tout y € <)

Soit x € Q et h € E tels que le segment [x,x + h] soit contenu dans ). Alors

Hf(x +h) = f(z) — Df(z)(h) — %D?f@;)(h, h)— ... — %D”f(x)(h, B h)H
Cllh|"+!
~ (n+1)!

En fait on peut encore affaiblir les hypotheses si on accepte de perdre un peu de contrdle sur le reste.
La formule de Taylor qui suit est essentiellement équivalente a la définition de la différentielle n-ieme
de f en z. Elle donne un développement limité de f en x a I’ordre n avec un minimum de controle
sur le reste.

Théoreme 3.4.4. (Développement limité ou formule de Taylor-Young). Soit E et F deux espaces
vectoriels normés sur R, Q) un ouvert de E et f : Q0 — F une application n fois différentiable sur §2,
admettant en x une différentielle ( n + 1 )-ieme. Alors

1
(n+1)!

F@ + h) =f(z) + Df@)(h) + = D2f(@)(h h) + ... +

o D™ () (b b, .., h)

+ [|R["*e(R)

oue(h) — 0 lorsque h — 0.

Preuve du Théoreme 3.4. On pose
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¢@):ﬂm+tm+«1—opf@+¢mwn+(1_ﬂ2ﬂf@+¢ma%m

2l
1—¢)m
+...+%D”f(erth)(h,h,...,h)

Alors W est de classe C! sur [0, 1] et

(1—0"

N D" f(x 4+ th)(h,h, ..., h)

W(t) =

La formule de Taylor avec reste intégral se réduit alors a

(1) — $(0) = / (t)dt

Preuve du Théoréme 3.5. On pose

/mw:ﬂx+my+a_wDﬂx+mxm+W1_”Zﬂﬂx+mxmm

2l

+...+£lijQiD"f@:+thXh,m.“,h)
C(1 —t)m+t
o)==

On a pour tout ¢ € [0, 1]

[ @I < g'(2)

et par le théoreme 2.1, il suit

[(1) = ¢ (0)]] < g(1) — 9(0)

ce qui donne le résultat.

Preuve du Théoreme 3.6. On sait que le résultat est vrai pour n = 1 d’apres la définition de la
différentiabilité de f en x. On procede maintenant par récurrence. Supposons que le théoreme soit
vrai pour 7, i.e. avec une derniere dérivée d’ordre n et un reste de la forme ||h||"(h). On pose

¢(h) = f(x+h) — f(z) = Df(z)(h) — 5D*f(x)(h,h) — ... — ﬁD"Hf(x)(h, hy...,h).
On va calculer la différentielle de ¢ :

D¢(h)(k) = Df(z + h)(k) — Df(z)(k) — D*f(z)(h,k) — ... — %D"“f(:x)(h,h, ooy hyk)

On pose alors g = D f,ona

Dwm:g@+m—g@%%h@ﬂ@—“.—%D%@xmh“wm

qui est une égalité dans L£(FE, F'). On applique alors I’hypothese de récurrence & Do(h) :
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Do(h) = ||hl["e(h)

ot e(h) — 0 dans L(E, F') lorsque h — 0. C’est-a-dire que pour tout > 0, il existe § > 0 tel que

|2l < 6 = [[Do(h)[| < nlln]"

D’apres I’inégalité des accroissements finis, il suit que pour tout h € E tel que ||h|| < 4, on a

12(h) — ¢(0)]| < nllA]"*!

Et comme ¢(0) = 0, on a pour tout € E tel que ||h| < J,

DR[| < nll2)"

Le résultat est donc démontré.

3.5 Extrema locaux

Définition 3.5.1. Soit E un espace vectoriel normé sur R, Q un ouvert de E et f : Q) — R. On dit que
f admet en x € §) un minimum local s’il existe un voisinage ouvert U de x tel que pour touty € U on
ait f(y) > f(z). On dit que [ admet en x € Q) un maximum local s’il existe un voisinage ouvert U de
x tel que pour tout y € U on ait f(y) < f(x). Dans les deux cas on parle d’extremum local.
L’extremum local est dit strict si on peut trouver un voisinage ouvert de x dans lequel les inégalités
ci-dessus soient strictes pour y #* .

Définition 3.5.2. Soit F un espace vectoriel normé sur R, 2 un ouvert de E et f : () — R une
application. On dit que f admet en x € ) un point critique si f est différentiable en x et si
Df(x)=0.

Proposition 3.5.1. (Condition nécessaire d’extremum local : premier ordre). Soit E un espace
vectoriel normé sur R, Q) un ouvert de E et f : Q0 — R une application. Si  admet en x € Q) un
extremum local et si f est différentiable en x, alors x est un point critique de f.

Preuve. On donne la preuve dans le cas d’un minimum local. Remarquons tout d’abord que
D f(x) = 0 si et seulement si pour tout v € F,v # 0, 0on a

of .

C’est clair du fait que

i
L (2) = DI @)

Soit donc v € E, v # 0. On sait que la dérivée directionnelle de f en = dans la direction de v existe,
du fait que f est différentiable en x. C’est-a-dire que

o J@ 4 ) = f(@)

t—0 t

existe dans R
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Pourt > 0,ona

>0
p =
et pour ¢t < 0,
fla+to) = f@) _,
p <
Il suit que
of
—(z) = 0.
5, (%)

Le résultat est démontré.

Proposition 3.5.2. (Condition nécessaire d’extremum local : deuxieme ordre). Soit E un espace
vectoriel normé sur R, ) un ouvert de F et f : () — R une application différentiable. Si f admet en
x € Q un extremum local et si f est deux fois différentiable en x, alors x est un point critique de f et
la forme quadratique D? f(x)(h, h) est positive, i.e. D*f(x)(h, h) > 0 pour tout h € E.

Preuve. On écrit la formule de Taylor-Young a I’ordre 2 :

f(x+h)= f(x) + Df(x)(h) + %D2f(x)(h, h) + ||k (h),

ou £(h) — 0 lorsque & — 0. On sait de plus que x est un point critique, donc

1
flx+h)— flx)= §D2f(a:)(h, h) + ||h|[2e(h) > 0 pour tout h assez petit.
Soit un vecteur v de norme 1 donné, si D?f(x)(v,v) # 0, alors pour ¢ assez petit

0 < flz+tv) = f(z)

< (%DQf(m)(v, o) + Hv||2€(tv>)

et on doit donc avoir D?f(z)(v,v) > 0.

Afin de pouvoir énoncer et surtout démontrer une condition suffisante d’extremum local strict, nous
aurons besoin du résultat suivant.

Théoreme 3.5.1. Soit F un espace de Banach sur R et ¢ : EE x E — R une forme quadratique
définie positive, i.e. telle que pour tout h # 0, ¢(h, h) > 0. Alors il existe K > 0 tel que pour tout
h € E on ait

¢(h,h) = K||h|*.

Preuve. En dimension finie, on peut utiliser la compacité de la sphere unité. En effet I’application de
St dans ]0, +00 [ qui & v associe ¢(v, v) est continue sur S* qui est compacte, donc elle admet sur S*
un minimum. Comme ce minimum est la valeur de ¢(v, v) pour un certain v € S, il est strictement
positif, i.e. il existe K > 0 tel que pour tout v € S* on ait ¢(v,v) > K. Maintenant pour h # 0 on a



3.5. EXTREMA LOCAUX 33

o(h, ) = [|h]]% (ﬁ ﬁ) > K|hlP.

En dimension infinie, cette preuve n’est plus valable du fait que la sphere unité n’est plus compacte.

Par contre une autre preuve, basée sur I’identification entre formes bilinéaires et applications linéaires
a valeurs dans I’espace des formes linéaires, fonctionne que la dimension soit finie ou non. Le fait
que ¢(h, h) soit définie positive implique que la forme bilinéaire ¢ est non dégénérée, i.e. que
I’application

T @,

0.(y) = d(x,y)

est un isomorphisme de £ sur son dual topologique E' = £(E,R). Donc il existe C; > 0 tel que
pour toutx € E

Soit 2 # 0 donné. Par définition de la borne supérieure, il existe y € S tel que

b = o lo(z, y)|| = Chll]]
yl=

L(ER)

C
ot )] > el

En utilisant I’inégalité de Cauchy-Schwarz, on obtient

CQ
—llll? < o 2) oy, v)l

Par ailleurs, ¢ étant continue, on sait qu’il existe Cy > 0 tel que

[p(u, V)| < Collul|[]

02
ijHz < l¢(z, 2)|Colly[1* = Collg(z, 2|

On obtient donc

Ct
> 1
40,

el

oz, )]

Comme (' et C'y sont indépendants de x et du choix de y, le résultat est démontré.
Théoreme 3.5.2. (Condition suffisante d’extremum local). Soit E un espace de Banach, ) un ouvert
de E,x € Qet f: Q) — R une application différentiable, deux fois différentiable en x. Si :
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1. x est un point critique de | ;

2. la forme quadratique D?f(z)(h, h) est définie positive (resp. définie négative) ;
alors f admet en x un minimum (resp. maximum) local strict.

Preuve. On la fait dans le cas d’un minimum. Elle utilise le théoreme précédent. Comme il existe
K > 0tel que D*f(z)(h,h) > K||h||* pour tout h € E, alors

f@+h) = fz) = D*f(2)(h, h) + [|hl[*e(h) = [|A][*(K — [l=()])

Comme €(h) — 0 lorsque h —, il existe n > 0 tel que pour || |< n on ait ||e(h)]| < K/2.11 suit que
pour ||h|| < pona

Flo+h) — £(&) > [P >0

La fonction f admet donc en x un minimum local strict.



Chapitre I

Inversion locale, fonctions implicites

4.1 Inversion locale, fonctions implicites

4.1.1 Difféomorphismes, inversion locale, inversion globale

Définition 4.1.1. Soit E et F deux espaces de Banach, U un ouvert de E et V un ouvert de F. On dit
qu’une application ¢ : U — V est un C*-difféomorphisme de U sur V si :

1. ¢ est une bijection de U sur'V ;
2. ¢ est de classe C* sur U ;
3. ¢ LestCFsurV.

Théoreme 4.1.1. (Inversion locale). Soit E et F deux espaces de Banach, () un ouvert de E et ¢ une
application de Q) dans F de classe C*. Soit v € Q, on suppose que D f(z) est un isomorphisme de E
sur I (i.e. une application linéaire continue et d’inverse continu). Alors il existe U un voisinage
ouvert de x dans §) et V un voisinage ouvert de f(x) dans F tels que ¢ soit un C*-difféomorphisme
de U surV.

Preuve. Quitte a composer f avec des translations, on peut supposer que x = Og et f(z) = 0p. On a
donc f(0) = 0 et la différentielle de f au point O est un isomorphisme de £ dans F'; une telle
application est un C*>°-difféomorphisme de F dans F'. Il est donc équivalent de trouver un voisinage
U de Og et un voisinage V de 0 tels que f soit un C*-difféomorphisme de U dans V/, et de trouver
deux voisinages U et W de O tels que (D £(0))~! o f soit un C*-difféomorphisme de U dans W (a
noter que la différentielle en 0 de (D f(0))~! o f est I'identité). On peut donc sans perte de généralité
supposer que F = F etque Df(0) = Idg.

Soit o = Id — f. La différentielle de ¢ est nulle en O et, comme cette différentielle est continue, il
existe un réel strictement positif 7 tel que la boule fermée B(0, ) de centre 0 et de rayon r soit
incluse dans €2 et que la norme de la différentielle de ¢ soit toujours inférieure a 1/2 sur cette boule.
Définissons deux voisinages ouverts U et W de 0 par W = B(0,7/2),U = B(0,r) N f~1(W)
(rappelons que f étant continue, f~! (W) est ouvert) et démontrons que de U dans W, f est bijective.

Pour prouver la surjectivité, considérons, pour tout point y de IV, la fonction ¢, définie sur B(0, r)
par ¢, (x) =y + ¢(z).

L’inégalité des accroissements finis montre que ¢ est 1/2-lipschitzienne sur B(0,7), i.e.

35
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_ 1
Vay, 22 € B0, 7). [le (22) — ¢ ()] < 5 |22 — 2]

On en déduit d’une part que sa translatée o, 1’est aussi et d’autre part, que ¢, envoie B(0,7) dans
elle-méme, et méme dans B(0,r), car pour tout z dans B(0,r) la norme de ¢(z) est inférieure ou
égale a /2 et celle de y strictement inférieure a /2. Le théoréme du point fixe montre I’existence
d’un point z appartenant & B(0, ) tel que ¢, (2) = z, donc envoyé par f sur y. Et comme ¢, (2) = z,
onaz € B(0,r)etdeplus f(z) =y € W donc z € f~1(IW). On a donc trouvé z € U tel que
f(z)=y.

L’injectivité s’obtient en utilisant & nouveau que ¢ est 1/2 lipschitzienne. Pour tous z; et x5 dans V/,
si I’on note y; et ys leurs images par f, on a

1 = w2ll = llo (1) + f (1) — @ (22) — [ (22)] < % [ = 22l + llyr — 2l

ce qui se réécrit

|71 — 22|l < 2(|y1 — v2|

et permet de conclure.

Il reste maintenant 2 montrer que la fonction réciproque de f est de classe C* sur 1¥. Remarquons
d’abord que pour tout = dans U, I’application linéaire D f(x) est inversible et d’inverse continu. En
effet, Df(x) = Idg —Dp(x) et Dy(x) est de norme inférieure a 1/2, donc la série

> (De())"

neN

est convergente et sa somme est inverse de D f(z), de norme inférieure a 2 .

Soit y dans W et z son antécédent dans U par f, démontrons qu’au point y, f~! est différentiable et
que sa différentielle n’est autre que I’inverse de D f(z). Pour tout vecteur k de £ tel que y + k soit
encore dans IV, notons x + h I’antécédent dans U de y + k par f. Comme

k= f(z+h)— f(z) =Df(z)(h)+ [hle(h)
on en déduit

FHy+k) = f(y) =h=(Df(@)" (k= [Ihlle(h)) = (Df ()" (k) + [|k]l=(k)

la derniére égalité venant du fait (démontré plus haut dans la preuve d’injectivité) que ||h|| < 2||k]|].
On a donc montré que f~ est différentiable dans TV et que pour tout y € W,

-1

D) W) = (PF ()

C’est-a-dire que

D(f7)=(Df) " of
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I reste encore 2 montrer que la fonction réciproque de f est de classe C*. On vient de prouver
I’existence de la différentielle de la réciproque de f en montrant qu’elle était la composée de trois
fonctions : la fonction f~!, la différentielle de f, et la "fonction inverse" qui a tout isomorphisme
bicontinu de F associe son inverse. La fonction inverse est infiniment différentiable, f est de classe
C* et la réciproque de f est continue (car différentiable), on en déduit que la réciproque de f est de
classe C'. De proche en proche, on vérifie que la réciproque de f est de classe C*.

Théoreme 4.1.2. (Inversion globale). Soit E et F deux espaces de Banach, €} un ouvert de E et ¢
une application de ) dans F de classe C*. Si f est injective et si pour tout x € Q, Df(z) est un
isomorphisme de E sur F, alors f(Q) est un ouvert de F et ¢ est un C* difféomorphisme de §) sur

f(€).

Preuve. C’est une conséquence directe du théoreme d’inversion locale.

4.2 Théoreme des fonctions implicites

Théoreme 4.2.1. (des fonctions implicites). Soit E, F' et GG trois espaces de Banach et [ une
application de classe C* définie sur un ouvert Q2 de E x F et a valeurs dans G. Soit ( xo,vo ) un
point de Q) tel que f (x9,y0) = 0 et tel que la différentielle partielle D, f (zo,yo) (i.e. la différentielle
enyo de y — [ (xo,y) ) soit un isomorphisme (i.e. une application linéaire bijective continue et
d’inverse continu) de F' dans G. Il existe un voisinage ouvert U de x( dans F, un voisinage ouvert V.
de vy, dans F et une fonction ¢ de classe C* définie sur U a valeurs dans F), tels que :

1. UxV C,
2. {(z,y) e U x V; f(z,y) =0} = {(x, ¢(x); x € U}, autrement dit

(x,y) e U x Vet f(r,y) =0) < (xr € Uety = ¢(x)).
La différentielle de ¢ en un point x € U est donnée par

D¢(x) = — (D, f(z.¢(x))) " © Do f (x,6(x))
Preuve. Le principe consiste a traduire la question sous une forme telle qu’il devient possible
d’appliquer le théoréme d’inversion locale. On considere 1’application 11, de €2 dans F x G, définie
par :

wl(xvy) = (ZU7f(CB,y))

Cette application est de classe C* et sa différentielle au point ( x¢, o ) est un isomorphisme de £ x F
sur I/ x GG. En effet, on a

Dy (wo, yo) (h, k) = (h, Dy f (20, y0) (h) + Dy f (w0, y0) (k) -
La bijectivité de D (0, yo) est simple a montrer. Soit v € E,w € G et cherchons un antécédent

(h,k) a (v,w) par Dy (xg, yo). Le seul choix possible de h est h = v, puis on utilise le fait que
D, f (z0,yo) est un isomorphisme de F' sur G : il existe un unique k € F' tel que

D f (zo,40) (v) + Dy f (w0,90) (k) = w
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On a donc que Dy (g, 3o) est linéaire continue. Par le théoréme de Banach-Schauder (théoréme de
N . . s N » . —1 . 1
I’application ouverte), elle est ouverte, d’ ot il suit que D1y (g, yo)” est continue '.

Le théoréme d’inversion locale montre que v, se restreint en un difféomorphisme de classe C* entre
un ouvert W x V dans E' x F', contenant ( xg, 3o ), et un ouvert O dans £ x GG contenant ( x(,0 ) et
nécessairement inclus dans W x G.

Ceci se traduit par ’existence d’une application 1, de classe C¥, de O dans F, vérifiant :

V(z,2) € O (x,99(x,2)) e WXV et V(r,y) e WxV flz,y) =2z (x,z)=y.

On définit alors I’application U = O N {z = 0} qui est un ouvert de £ car I"image de O ouvert de
E x F' par une projection, qui est une application linéaire continue surjective et donc ouverte. Par
construction, U C W. L’application ¢, de U dans V' définie par ¢(x) = 1,(x,0), vérifie alors les
propriétés annoncées.

Calculons maintenant la différentielle de ¢. On différencie simplement la relation

fz, ¢(x)) =0

On obtient :

Dy f(z,¢(x)) + Dy f(z,¢(x)) 0 D(z) = 0

d’ou le résultat.
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