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Chapitre 1
Applications différentiables, différentielle

1.1 Définitions

Définition 1.1.1. (Application différentiable). Soit E et F deux espaces vectoriels normés sur R et
f : E → F une application. Soit x ∈ E, on dit que f est différentiable en x s’il existe une application
L linéaire continue de E dans F telle que

lim
h→0

f(x+ h)− f(x)− L(h)

‖h‖
= 0.

Remarque 1.1.1. Une propriété immédiate mais qui peut être utile : si on change la norme sur E en
une norme équivalente et si on change la norme sur F en une norme équivalente, cela ne change pas
la notion de différentiabilité. Autrement dit une fonction différentiable en un point pour un choix de
norme sur E et sur F le sera pour tout choix de normes équivalentes. De même une fonction non
différentiable en x restera non différentiable si on change la norme sur E en une norme équivalente
et la norme sur F en une norme équivalente.
Proposition 1.1.1. Avec les notations de la définition ci-dessus, si l’application L existe, elle est
unique.

Dém
Supposons qu’il existe L ∈ L(E,F

)
et L1 ∈ L(E,F ) telles que

lim
h→0

f(x+ h)− f(x)− L(h)

‖h‖
= 0 et lim

h→0

f(x+ h)− f(x)− L1(h)

‖h‖
= 0.

Alors

lim
h→0

L1(h)− L(h)

‖h‖
= 0

Prenons h = tω avec t > 0 et ‖ω‖ = 1, ω fixé, et faisons tendre t vers 0 . On a

0 = lim
t→0

L1(tω)− L(tω)

t
= lim

t→0
L1(ω)− L(ω) = L1(ω)− L(ω)

Donc L et L1 sont égales sur le sphère unité de E. Par linéarité, il suit que L1 = L.
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6 CHAPITRE 1. APPLICATIONS DIFFÉRENTIABLES, DIFFÉRENTIELLE

Définition 1.1.2. Avec les notations de la définition 1.1, lorsqu’elle existe, l’application L s’appelle
la différentielle de f en x, ou encore l’application tangente à f au point x. On la note Df(x).
Proposition 1.1.2. Soit E et F deux espaces vectoriels normés sur R, x ∈ E et f : E → F une
application différentiable en x, alors f est continue en x.

Preuve. On sait qu’il existe L ∈ L(E,F ) telle que

lim
h→0

f(x+ h)− f(x)− L(h)

‖h‖
= 0

ce qui s’écrit encore de la façon suivante : il existe une application ε : E → F satisfaisant

lim
h→0

ε(h) = 0

et telle que pour tout h ∈ E, h 6= 0, on ait

f(x+ h)− f(x) = L(h) + ‖h‖ε(h).

Il suit par linéarité de L que

lim
h→0

f(x+ h) = f(x),

i.e. f est continue en x.
Définition 1.1.3. Soit E et F deux espaces vectoriels normés sur R,Ω un ouvert de E, et f une
application de Ω dans F .

1. On dira que f est différentiable sur Ω si elle l’est en tout point x de Ω.

2. Si f est différentiable sur Ω, on appelle application différentielle (ou simplement différentielle)
de f l’application Df qui à x ∈ Ω associe Df(x) l’application tangente àf au point x. La
différentielle Df est une application de Ω dans L(E,F ).

3. On dira que f est de classe C1 sur Ω si elle est différentiable sur Ω et si Df est continue sur Ω,
c’est-à-dire

∀x ∈ Ω, lim
y→0
‖Df(x+ y)−Df(x)‖L(E,F) = 0

On rappelle que cette norme s’écrit

‖Df(x+ y)−Df(x)‖L(E,F) = sup
h∈E,h 6=0

‖Df(x+ y)(h)−Df(x)(h)‖F
‖h‖E

= sup
h∈E,‖h‖E=1

‖Df(x+ y)(h)−Df(x)(h)‖F

Remarque 1.1.2. Attention ! L’application Df n’a aucune raison d’être linéaire (sauf si f est
bilinéaire, nous verrons cela plus tard), c’est sa valeur en chaque point x qui est une application
linéaire continue.
Proposition 1.1.3. (Opérations sur les fonctions différentiables).

1. Toute combinaison linéaire de fonctions différentiables est différentiable et
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D(λf + µg)(x) = λDf(x) + µDg(x).

2. Composition : soit E,F et G trois espaces vectoriels normés sur R, U un ouvert de E, V un
ouvert de F, x ∈ U . Soit f : U → F une application telle que f(U) ⊂ V , soit g : V → G. Si f
est différentiable en x et g est différentiable en f(x), alors g ◦ f est différentiable en x et on a

D(g ◦ f)(x)(h) = Dg(f(x))(Df(x)(h)),

autrement dit

D(g ◦ f)(x) = Dg(f(x)) ◦Df(x).

Et il suit que si f est différentiable sur U et g sur V alors g ◦ f est différentiable sur U .

Preuve

1. Trivial.

2. En utilisant le fait que f est différentiable en x,

g ◦ f(x+ h) = g(f(x) +Df(x)(h) + ‖h‖ε(h))

où ε(h)→ 0 quand h→ 0. La différentiabilité de g en f(x) nous donne alors

g ◦ f(x+ h) =g(f(x)) +Dg(f(x))(Df(x)(h) + ‖h‖ε(h))

+ ‖Df(x)(h) + ‖h‖ε(h)‖ε̃(Df(x)(h) + ‖h‖ε(h))

=g(f(x)) +Dg(f(x))(Df(x)(h)) +Dg(f(x))(‖h‖ε(h))

+ ‖Df(x)(h) + ‖h‖ε(h)‖ε̃(Df(x)(h) + ‖h‖ε(h))

=g(f(x)) +Dg(f(x))(Df(x)(h)) + ‖h‖Dg(f(x))(ε(h))

+ ‖Df(x)(h) + ‖h‖ε(h)‖ε̃(Df(x)(h) + ‖h‖ε(h)),

où ε̃(k)→ 0 lorsque k → 0. Donc

‖g ◦ f(x+ h)− g(f(x))−Dg(f(x))(Df(x)(h)‖

≤ ‖h‖
(
‖Dg(f(x))(ε(h))‖+

(
‖Df(x)‖L(E,F )

+ ‖ε(h)‖
)
‖ε̃(Df(x)(h) + ‖h‖ε(h))‖

)
.

Par linéarité et continuité de Dg(f(x)), on a

Dg(f(x))(ε(h))→ 0 lorsque h→ 0

et comme

ε̃(Df(x)(h) + ‖h‖ε(h))→ 0 lorsque h→ 0

il suit que
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lim
h→0

g ◦ f(x+ h)− g(f(x))−Dg(f(x))(Df(x)(h)

‖h‖
= 0

Ceci conclut la preuve.
Corollaire 1.1.1. Soit E et F deux espaces vectoriels normés sur R, U un ouvert de E et V un ouvert
de F . Soit f : U → V une application bijective. On suppose que f est différentiable en x ∈ U et que
f−1 est différentiable en f(x), alors Df(x) est un isomorphisme de E sur F et

D
(
f−1
)

(f(x)) = (Df(x))−1

Démonstration
On applique la proposition précédente à IdE = f−1 ◦ f et IdF = f ◦ f−1, en remarquant que

D IdE(x) = IdE, D IdF (f(x)) = IdF

On va maintenant voir la notion de dérivée directionnelle et son lien avec la différentielle.
Définition 1.1.4. (Dérivée directionnelle). Soit E et F deux espaces vectoriels normés sur R,Ω un
ouvert de E, et f une application de Ω dans F . Soit x ∈ E et v ∈ E, v 6= 0. On appelle dérivée
directionnelle de f en x selon la direction v la dérivée en 0 , si elle existe, de l’application

φ : t ∈ R 7→ f(x+ tv)

on la note
∂f

∂v
(x)

Autrement dit

∂f

∂v
(x) = lim

t→0

f(x+ tv)− f(x)

t

si elle existe. En effet,

φ′(0) = lim
t→0

φ(t)− φ(0)

t
si elle existe

et

φ(t)− φ(0)

t
=
f(x+ tv)− f(x)

t

Lorsqu’une fonction est différentiable, elle admet des dérivées directionnelles dans toutes les
directions et on peut les calculer à l’aide de la différentielle.
Proposition 1.1.4. Soit E et F deux espaces vectoriels normés sur R,Ω un ouvert de E, x ∈ Ω et f
une application de Ω dans F différentiable en x. Alors f admet en x des dérivées directionnelles dans
toutes les directions et pour tout v ∈ E, v 6= 0, on a

∂f

∂v
(x) = Df(x)(v).
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Preuve. On sait que

lim
h→0

f(x+ h)− f(x)−Df(x)(h)

‖h‖
= 0.

Soit v ∈ E, v 6= 0, en prenant h = tv, t ∈ R, on a

lim
t→0

f(x+ tv)− f(x)−Df(x)(tv)

|t|‖v‖
= 0

ce qui équivaut à

lim
t→0

f(x+ tv)− f(x)−Df(x)(tv)

t
= 0.

D’autre part, comme Df(x) est linéaire, Df(x)(tv) = tDf(x)(v). Il suit

lim
t→0

f(x+ tv)− f(x)

t
= Df(x)(v).

Ceci conclut la preuve.
Remarques
Une application peut admettre en un point des dérivées directionnelles dans toutes les directions et
pourtant ne pas être différentiable en ce point. On verra des exemples explicites de ce genre de
situation en dimension finie.

Voyons quelques exemples de calculs de différentielles.

– E = F =Mn(R), f(A) = I + 2A. On développe f(A+H) :

f(A+H) = I + 2A+ 2H

On identifie la partie linéaire en H : on pose L(H) = 2H et on a

f(A+H) = f(A) + L(H)

Donc en particulier

lim
H→0

f(A+H)− f(A)− L(H)

‖H‖
= 0

Donc f est différentiable en tout point A de E et Df(A)(H) = 2H .

– E = F =Mn(R) munis de la même norme matricielle, f(A) = A2. On développe f(A+H) en
n’oubliant pas que le produit matriciel ne commute pas :

f(A+H) = (A+H)2 = A2 + AH +HA+H2.

On identifie la partie linéaire en H : on pose L(H) = AH +HA et on a
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f(A+H) = f(A) + L(H) +H2

il suit

∥∥∥∥f(A+H)− f(A)− L(H)

‖H‖

∥∥∥∥ =

∥∥∥∥ H2

‖H‖

∥∥∥∥ ≤ C‖H‖

car pour toute norme ‖.‖surMn(R) il existe C > 0 tel que

‖AB‖ ≤ C‖A‖‖B‖∀A,B ∈Mn(R)

On a donc

lim
H→0

f(A+H)− f(A)− L(H)

‖H‖
= 0

f est différentiable en tout point A de E et Df(A)(H) = AH +HA.

1.2 Cas des applications linéaires continues

Proposition 1.2.1. Soit E et F deux espaces vectoriels normés sur R et L ∈ L(E,F ). Alors L est
différentiable sur E et pour tout x ∈ E on a

DL(x) = L

Démonstration
C’est un calcul direct

L(x+ h) = L(x) + L(h) + 0

et 0 est bien de la forme ‖h‖ε(h) avec ε(h)→ 0 quand h→ 0.

1.2.1 Cas où E = R

Proposition 1.2.2. On considère ici le cas où E = R. Soit F un espace vectoriel normé sur R et f
une application définie sur un ouvert U de R à valeurs dans F . Soit x ∈ U , f est différentiable en x
si et seulement si elle est dérivable en x au sens usuel et dans ce cas, on a

Df(x) : h 7→ hf ′(x)

On voit donc que la notion habituelle de dérivabilité pour les fonctions à une variable réelle est
exactement la même chose que la différentiabilité. De plus pour ces fonctions la différentielle en un
point est l’application de multiplication par la dérivée de f en ce point.
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Preuve Supposons que f soit dérivable en x, alors on peut effectuer un développement de
Taylor-Lagrange de f à l’ordre 1 en x :

f(x+ h) = f(x) + hf ′(x) + hε(h) où ε tend vers 0 en 0.

On voit que

lim
h→0

f(x+ h)− f(x)− hf ′(x)

|h|
= 0

et donc f est différentiable en x avec Df(x)(h) = hf ′(x).
Supposons maintenant que f soit différentiable en x. Il existe une application L ∈ L(R, F ) telle que

lim
h→0

f(x+ h)− f(x)− L(h)

|h|
= 0.

Mais L(h) = hL(1) car h ∈ R et donc

lim
h→0

f(x+ h)− f(x)− hL(1)

|h|
= 0

Ceci est équivalent à (encore une fois du fait que h ∈ R )

lim
h→0

f(x+ h)− f(x)− hL(1)

h
= 0

et on a donc

lim
h→0

f(x+ h)− f(x)

h
= L(1)

Donc f est dérivable en x et f ′(x) = L(1).

1.2.2 Cas où E = Rn

On se place dans le cas où E = Rn et F est un espace vectoriel normé sur R. Soit U un ouvert de Rn

et f : U → F une application. Soit x = (x1, . . . , xn) ∈ U . On rappelle la définition des dérivées
partielles de f en x .
Définition 1.2.1. La dérivée partielle de f par rapport à la i-ème variable au point x est la dérivée
en 0 , si elle existe, de l’application

t ∈ R 7→ f (x1, . . . , xi−1, xi + t, xi+1, . . . , xn)

on la note

∂f

∂xi
(x)

Autrement dit,
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∂f

∂xi
(x) = lim

t→0

f (x1, . . . , xi−1, xi + t, xi+1, . . . , xn)− f (x1, . . . , xi−1, xi, xi+1, . . . , xn)

t

si cette limite existe.

On voit donc que la dérivée partielle de f par rapport à la i-ème variable au point x est la dérivée
directionnelle de f en x selon le i-ème vecteur de base ei (où {e1, . . . , en} est la base canonique de
Rn ), i.e.

∂f

∂xi
(x) =

∂f

∂ei
(x).

Donc en particulier, si f est différentiable en x,

∂f

∂xi
(x) = Df(x) (ei) = Df(x)(0, . . . , 0, 1, 0, . . . , 0) (le 1 étant à la i-ème place).

Comme la différentielle de f en x, si elle existe, est linéaire, il suit que nous connaissons sa forme :
on développe h ∈ Rn sur la base canonique

h = h1e1 + . . .+ hnen

et on a

Df(x)(h) =
n∑

i=1

hi
∂f

∂xi
(x)

Nous venons de montrer la proposition suivante :
Proposition 1.2.3. Soit U un ouvert de Rn, x ∈ U, F un espace vectoriel normé sur R et f : U → F
une application différentiable en x. Alors la différentielle de f en x s’écrit en fonction des dérivées
partielles de f en x de la façon suivante

Df(x)(h) =
n∑

i=1

hiDf(x) (ei) =
n∑

i=1

hi
∂f

∂xi
(x). (1.1)

Ceci nous donne un moyen pratique d’étudier la différentiabilité en un point d’une fonction définie
sur un ouvert de Rn.
Proposition 1.2.4. Soit U un ouvert de Rn, x ∈ U, F un espace vectoriel normé sur R et f : U → F
une application. Alors f est différentiable en x si et seulement si

1. les dérivées partielles de f en x existent par rapport à toutes les variables ;

2. de plus

lim
h→0

f(x+ h)− f(x)−
∑n

i=1 hi
∂f
∂xi

(x)

‖h‖
= 0.
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1.2.3 Cas où E = Rn, F = Rp, matrices Jacobiennes

Soit E = Rn, F = Rp,Ω un ouvert de E, x ∈ Ω et f : Ω→ F une application. On note f1, . . . , fp les
composantes de f . Les dérivées partielles de f en x, si elles existent, sont les vecteurs de Rp dont les
composantes sont les dérivées partielles des composantes de f :

∂f

∂xi
=



∂f1
∂xi
∂f2
∂xi

·
·
·

∂fp
∂xi


.

On voit que si f est différentiable en x, on a

Df(x)(h) =
n∑

i=1

hi
∂f

∂xi
(x) = J(f)(x)


h1
h2
·
·
·
hn

 (1.2)

où J(f)(x) est la matrice Jacobienne de f en x, donnée par (les colonnes correspondent aux variables
par rapport auxquelles on dérive et les lignes aux composantes de la fonction)

J(f)(x) =



∂f1
∂x1

∂f1
∂x2

· · ·
∂f2
∂x1

∂f2
∂x2

· · ·
· · · · ·
· · · · ·
· · · · ·

∂fp
∂x1

∂fp
∂x2

· · ·
∂fp
∂xn


.

L’étude de la différentiabilité de la fonction f en x peut donc se faire de la façon suivante :

1. on commence par vérifier que les dérivées partielles en x de f1, f2, . . . , fp existent par rapport à
toutes les variables ;

2. on vérifie ensuite que

lim
h→0

f(x+ h)− f(x)− (J(f)(x))(h)

‖h‖
= 0

où (J(f)(x))(h) est J(f)(x) appliquée au vecteur colonne h (équation (1.2)).

La proposition suivante permet de ramener, si on le souhaite, l’étude de la différentiabilité de f à
celle de ses composantes.
Proposition 1.2.5. La fonction f est différentiable en x si et seulement si toutes ses composantes le
sont.
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Preuve. Supposons que f soit différentiable en x. La i-ème composante de f est donnée par
fi = πi ◦ f où

πi : Rp → R, πi (x1, . . . , xp) = xi

Comme πi est linéaire (et donc continue car Rp est de dimension finie), elle est différentiable en tout
point, en particulier en f(x). Donc fi est différentiable en x comme composée de fonctions
différentiables.

Supposons maintenant que toutes les composantes de f soient différentiables en x, alors leurs
différentielles en x sont données par

Dfi(x)(h) =
n∑

j=1

hj
∂fi
∂xj

(x)

Posons L(h) = (J(f)(x))(h) donné par l’équation (1.2) ; L est bien linéaire de Rn dans Rp (et donc
aussi continue, car on est en dimension finie). La i-ème composante de f(x+ h)− f(x)− L(h) est

fi(x+ h)− fi(x)−
n∑

j=1

hj
∂fi
∂xj

(x) = fi(x+ h)− fi(x)−Dfi(x)(h)

et du fait que toutes les normes sur Rp sont équivalentes,

‖f(x+ h)− f(x)− L(h)‖ ≤ C

p∑
i=1

|fi(x+ h)− fi(x)−Dfi(x)(h)| ,

où C > 0 est indépendante de x et f . Il suit que

∥∥∥∥f(x+ h)− f(x)− L(h)

‖h‖

∥∥∥∥ ≤ C

p∑
i=1

|fi(x+ h)− fi(x)−Dfi(x)(h)|
‖h‖

et chaque terme de la somme tend vers 0 lorsque h tend vers 0 du fait que les fi sont toutes
différentiables en x.

1.2.4 Cas des applications multilinéaires continues

Dans ce paragraphe, nous allons travailler avec des espaces produits. Si E1, E2 sont des espaces
vectoriels normés sur R, nous munirons E1 × E2 d’une des normes équivalentes suivantes

‖(x, y)‖p =
(
‖x‖pE1

+ ‖y‖pE2

)1/p
, p ∈ [1,+∞[

‖(x, y)‖∞ = max (‖x‖E1 , ‖y‖E2)

De même, si E1, E2, . . . , En sont des espaces vectoriels normés sur R, nous munirons
E1 × E2 × . . .× En d’une des normes équivalentes suivantes
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‖(x1, x2, . . . , xn)‖p =
(
‖x1‖pE1

+ ‖x2‖pE2
+ . . .+ ‖xn‖pEn

‖
)1/p

, p ∈ [1,+∞[,

‖(x1, x2, . . . , xn)‖∞ = max
(
‖x1‖E1

, ‖x2‖E2
, . . . , ‖xn‖En

)
Définition 1.2.2. (Application bilinéaire). Soit E1, E2, F des espaces vectoriels normés sur R. Une
application f : E1 × E2 → F est dite bilinéaire si elle est linéaire par rapport à chacun de ses
arguments, i.e. si pour tout y ∈ E2, l’application

φ1 : x ∈ E1 7→ f(x, y) (1.3)

est linéaire de E1 dans F et pour tout x ∈ E1, l’application

φ2 : y ∈ E2 7→ f(x, y) (1.4)

est linéaire de E2 dans F .

On a pour les applications bilinéaires un résultat de continuité analogue à celui des applications
linéaires.
Théorème 1.2.1. Avec les notations de la définition ci-dessus, une application bilinéaire f est
continue si et seulement si

∃C > 0 t.q. ∀(x, y) ∈ E1 × E2, ‖f(x, y)‖F ≤ C‖x‖E1‖y‖E2 . (1.5)

Preuve. C’est évident si on remarque que f : E1 × E2 → F est bilinéaire continue si et seulement si

ψ : x ∈ E1 7→ (y ∈ E2 7→ f(x, y))

est linéaire continue de E1 dans L(E2, F
)
.

Définition 1.2.3. (Application n-multilinéaire). Soit E1, E2, . . . , En, F des espaces vectoriels normés
sur R. Une application f : E1 × E2 × . . .× En → F est dite n-multilinéaire si elle est linéaire par
rapport à chacun de ses arguments, i.e. pour tout i ∈ {1, 2, . . . , n}, pour tout
x1 ∈ E1, . . . , xi−1 ∈ Ei−1, xi+1 ∈ Ei+1, . . . , xn ∈ En, l’application

φi : xi ∈ Ei 7→ f (x1, . . . , xi−1, xi, xi+1, . . . , xn) (1.6)

est linéaire de Ei dans F .

On a pour ces applications un résultat de continuité similaire qui se démontre comme le cas bilinéaire
mais avec une succession de n applications au lieu de 2.
Proposition 1.2.6. Avec les notations de la définition ci-dessus, une application n multilinéaire f est
continue si et seulement si il existe C > 0 tel que

‖f (x1, . . . , xn)‖F ≤ C ‖x1‖E1
. . . ‖xn‖En

,∀ (x1, . . . , xn) ∈ E1 × . . .× En (1.7)

On peut montrer facilement qu’une application n-multilinéaire continue est différentiable et sa
différentielle se calcule très simplement. On commence par traiter le cas bilinéaire.
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Proposition 1.2.7. Soit E1, E2, F des espaces vectoriels normés sur R et f : E1 × E2 → F une
application bilinéaire continue. Alors f est différentiable sur E1 × E2 et

Df(x, y)(h, k) = f(x, k) + f(h, y)

Preuve. On développe f((x, y) + (h, k)) :

f((x, y) + (h, k)) = f(x+ h, y + k)

= f(x, y) + f(x, k) + f(h, y) + f(h, k).

L’expression f(x, k) + f(h, y) est linéaire continue en (h, k) pour chaque (x, y), on pose donc
L(h, k) = f(x, k) + f(h, y). On a alors

∥∥∥∥f(x+ h, y + k)− f(x, y)− L(h, k)

‖(h, k)‖2

∥∥∥∥ =

∥∥∥∥ f(h, k)

‖(h, k)‖2

∥∥∥∥
≤ C

‖h‖‖k‖
‖(h, k)‖2

≤ C
‖(h, k)‖22
‖(h, k)‖2

= C‖(h, k)‖2

On a donc

lim
(h,k)→(0,0)

f(x+ h, y + k)− f(x, y)− L(h, k)

‖(h, k)‖2
= 0

ce qui conclut la preuve.
On a un résultat similaire dans le cas multi-linéaire. La preuve est laissée en exercice.
Proposition 1.2.8. Soit E1, E2, . . . , En, F des espaces vectoriels normés sur R et

f : E1 × E2 × . . .× En → F

une application n-multilinéaire continue, alors f est différentiable sur E1 × E2 × . . .× En et
Df (x1, x2, . . . , xn) (h1, h2, . . . , hn) = f (h1, x2, . . . , xn)+f (x1, h2, . . . , xn)+. . .+f (x1, x2, . . . , hn)
ce qu’on peut aussi écrire

Df (x1, x2, . . . , xn) (h1, h2, . . . , hn) =
n∑

i=1

f (x1, . . . , xi−1, hi, xi+1, . . . , xn)

1.2.5 Applications à valeurs dans un produit

Proposition 1.2.9. Soit E,F1, . . . , Fn des espaces vectoriels normés sur R,Ω un ouvert de E, x ∈ Ω
et

f : E → F1 × F2 × . . .× Fn

une application. On notera f1, f2, . . . , fn les composantes de f , i.e. chaque fi est une application de
E dans Fi. Alors f est différentiable en x si et seulement si chacune des fi est différentiable en x,
auquel cas on a
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Df(x)(h) = (Df1(x)(h), Df2(x)(h), . . . , Dfn(x)(h))

Preuve. Pour montrer ce résultat, on prend la norme ‖.‖1 sur F1 × F2 × . . .× Fn pour simplifier les
calculs. Supposons que les fi sont toutes différentiables en x, on pose

L(h) = (Df1(x)(h), Df2(x)(h), . . . , Dfn(x)(h))

On a

‖f(x+ h)− f(x)− L(h)‖1
‖h‖

=
n∑

i=1

‖f(x+ h)− f(x)− L(h)‖1
‖h‖

et ceci tend vers 0 quand h→ 0. La réciproque est tout aussi simple. On note πi la projection de
F1 × F2 × . . .× Fn sur Fi, on a

fi = πi ◦ f

L’application πi est linéaire continue donc différentiable et Dπi(x) = πi. Si on suppose que f est
différentiable en x, il suit que fi l’est aussi et de plus

Dfi(x) = (Dπi(f(x))) ◦Df(x) = πi ◦Df(x)

On a donc bien

Df(x)(h) = (Df1(x)(h), Df2(x)(h), . . . , Dfn(x)(h))

1.2.6 Applications à valeurs dans R ou une algèbre normée sur R

Définition 1.2.4. (Algèbre normée sur R ). Un espace vectoriel normé ( E, ‖.‖)surR est appelé une
R-algèbre normée s’il est de plus muni d’une loi interne de multiplication telle que

‖xy‖ ≤ ‖x‖‖y‖,∀x, y ∈ E (1.8)
(xy)z = x(yz),∀x, y, z ∈ E

(x+ y)z = xz + yz, x(y + z) = xy + xz,∀x, y, z ∈ E
(αx)y = x(αy) = αxy, ∀α ∈ K, x, y ∈ E

Une R-algèbre normée est dite :

– commutative si xy = yx pour tout x, y ∈ E ;
– unitaire s’il existe un élément x ∈ E tel que xy = yx = y pour tout y ∈ E.
Exemples 1.2.1. – R ou C sont des R-algèbre normées commutatives et unitaires.
– Mn(R) muni d’une norme vérifiant la propriété d’algèbre est une R-algèbre normée unitaire et

non commutative.
– I un intervalle compact de R, C(I) est une R-algèbre normée unitaire et commutative.



18 CHAPITRE 1. APPLICATIONS DIFFÉRENTIABLES, DIFFÉRENTIELLE

– C0(R), ensemble des fonctions continues sur R à valeurs réelles et tendant vers 0 à l’infini est une
R-algèbre normée commutative et non unitaire.

Proposition 1.2.10. Soit A une R-algèbre normée, E un espace vectoriel normé sur R,Ω un ouvert
de E, x ∈ Ω et f et g deux applications de Ω dans A. On suppose que f et g sont différentiables en x,
alors fg est différentiable en x et

D(fg)(x)(h) = (Df(x)(h))g(x) + f(x)Dg(x)(h)

Preuve. On a

f(x+ h) = f(x) +Df(x)(h) + ‖h‖ε1(h),

g(x+ h) = g(x) +Dg(x)(h) + ‖h‖ε2(h),

où ε1(h) et ε2(h) tendent vers 0 lorsque h→ 0. Il suit que

f(x+ h)g(x+ h) = (f(x) +Df(x)(h) + ‖h‖ε1(h)) (g(x) +Dg(x)(h) + ‖h‖ε2(h))

=f(x)g(x) + (Df(x)(h))g(x) + f(x)Df(x)(h)

+Df(x)(h)Dg(x)(h) + ‖h‖f(x)ε2(h) + ‖h‖ε1(h)g(x)

+ ‖h‖2ε1(h)ε2(h)

La propriété d’algèbre ainsi que le fait que Df(x) et Dg(x) sont linéaires continues, impliquent que

‖Df(x)(h)Dg(x)(h) + ‖h ‖f(x)ε2(h)+‖h ‖ε1(h)g(x)+‖h
∥∥2ε1(h)ε2(h)

∥∥
≤ C‖h‖2 + ‖h‖ (‖f(x)‖ ‖ε2(h)‖+ ‖ε1(h)‖ ‖g(x)‖) + ‖h‖2 ‖ε1(h)‖ ‖ε2(h)‖

et donc que

lim
h→0

‖Df(x)(h)Dg(x)(h) + ‖h ‖f(x)ε2(h)+‖h ‖ε1(h)g(x)+‖h ‖2ε1(h)ε2(h)‖
‖h‖

= 0.

Proposition 1.2.11. Soit E un espace vectoriel normé sur R,Ω un ouvert de E, x ∈ Ω et f et g deux
applications de Ω dans R. On suppose que f et g sont différentiables en x et que g(x) 6= 0. Alors il
existe U ⊂ Ω ouvert de E tel que 1/g et f/g soient définies sur U . De plus 1/g et f/g sont
différentiables en x et

D

(
1

g

)
(x)(h) = −Dg(x)(h)

(g(x))2
, D

(
f

g

)
(x)(h) = −f(x)Dg(x)(h)− g(x)Df(x)(h)

(g(x))2
.

Preuve. Laissée en exercice.



Chapitre 2
Théorème des accroissements finis

2.1 Le théorème

Commençons par énoncer un premier théorème avec des fonctions définies sur un intervalle de R.
Théorème 2.1.1. Soit E un espace vectoriel normé sur R. Soit [a, b](a < b) un intervalle compact de
R. Soit f : [a, b]→ E et g : [a, b]→ R deux applications continues sur [a, b] et dérivables sur ]a, b[,
telles que pour tout x ∈]a, b [, ‖f ′(x)‖ ≤ g′(x) . Alors,

‖f(b)− f(a)‖ ≤ g(b)− g(a)

Preuve. On va montrer que pour tout ε > 0 on a

‖f(b)− f(a)‖ ≤ g(b)− g(a) + ε(b− a) + ε

ce qui établira le théorème car ε est aussi petit qu’on veut. Pour cela on considère pour ε > 0 donné
l’ensemble A des x ∈ [a, b] tels que

‖f(x)− f(a)‖ > g(x)− g(a) + ε(x− a) + ε.

Si A est vide, la preuve est terminée. Supposons donc que A 6= ∅. Comme ε est donné et strictement
positif, par continuité de f et g il existe η > 0 tel que [a, a+ η] ∩ A = ∅. Donc A est non vide (par
hypothèse) et minoré par a. Il admet donc une borne inférieure notée c. On a a < c d’après ce qui
précède. De plus c /∈ A. En effet, A est défini par une inégalité stricte entre fonctions continues, donc
A est ouvert. Il suit que si c ∈ A alors tout un voisinage de c sera dans A, ce qui contredit le fait que c
soit la borne inférieure de A. De même c < b car sinon on aurait A = {b} et c = b serait dans A. On a
donc c ∈]a, b[ et comme c /∈ A on a

‖f(c)− f(a)‖ ≤ g(c)− g(a) + ε(c− a) + ε

De plus

‖f ′(c)‖ ≤ g′(c)

Ecrivons que f et g sont dérivables en c :

19
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f(c+ h) = f(c) + hf ′(c) + |h|ε1(h)

g(c+ h) = g(c) + hg′(c) + |h|ε2(h)

où ε1(h) et ε2(h) tendent vers 0 lorsque h→ 0. Nous allons montrer que pour h > 0 assez petit,
c+ h /∈ A, ce qui contredira le fait que c = inf A. Pour h > 0, on a

‖f(c+ h)− f(a)‖ ≤ ‖f(c+ h)− f(c)‖+ ‖f(c)− f(a)‖
≤ h (‖f ′(c)‖+ ‖ε1(h)‖) + g(c)− g(a) + ε(c− a) + ε

≤ h (g′(c) + ‖ε1(h)‖) + g(c)− g(a) + ε(c− a) + ε

≤ h (‖ε1(h)‖ − ε2(h)) + g(c+ h)− g(a) + ε(c− a) + ε.

Et comme ε1(h) et ε2(h) tendent vers 0 lorsque h→ 0, on peut choisir h0 assez petit pour que pour
tout h ∈]0, h0] on ait

‖ε1(h)‖ − ε2(h) ≤ ε

Il suit qu’il existe h0 > 0 tel que pour tout h ∈] 0, h0],

‖f(c+ h)− f(a)‖ ≤ g(c+ h)− g(a) + ε(c+ h− a) + ε

i.e. ]c, c+ h0] ∩ A = ∅. On a une contradiction. Donc A = ∅.
Le théorème des accroissements finis est maintenant un résultat à peu près immédiat.
Théorème 2.1.2. (Inégalité des accroissements finis). Soit E et F deux espaces vectoriels normés sur
R,Ω un ouvert de E et f une application différentiable de Ω dans F . Soit x, y ∈ Ω tels que le
segment [x, y] soit inclus dans Ω. Alors

‖f(y)− f(x)‖ ≤ ‖y − x‖ sup
z∈[x,y]

‖Df(z)‖L(E,F)

Preuve. On paramètre le segment [x, y] de la façon usuelle

[x, y] = {x+ t(y − x), t ∈ [0, 1]}

On note

k = sup
z∈[x,y]

‖Df(z)‖L(E,F)

Si k = +∞, le théorème est trivial. On suppose donc que k <∞. On définit les deux fonctions
suivantes :

φ : [0, 1]→ F, φ(t) = f(x+ t(y − x))

ψ : [0, 1]→ R+, ψ(t) = k‖y − x‖t

Elles vérifient bien les hypothèses du théorème 2.1. En effet
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‖φ′(t)‖F = ‖Df(x+ t(y − x))(y − x)‖F
≤ ‖Df(x+ t(y − x))‖L(E,F)‖(y − x)‖E
≤ k‖y − x‖ = ψ′(t)

On a donc

‖φ(1)− φ(0)‖ ≤ ψ(1)− ψ(0)

et le théorème est démontré.
A noter que dans le cas des fonctions définies sur un ouvert d’un espace vectoriel normé sur R à
valeurs dans R, on peut montrer une égalité des accroissements finis qui est une conséquence directe
de l’égalité des accroissements finis usuelle.
Théorème 2.1.3. (Une égalité des accroissements finis). Soit E un espace vectoriel normé sur R,Ω
un ouvert de E, f une application de Ω dans R différentiable dans Ω. Soit x, y ∈ Ω tels que le
segment [x, y] soit inclus dans Ω. Alors il existe z ∈]x, y[ tel que

f(y)− f(x) = Df(z)(y − x)

Preuve. On considère l’application

φ : [0, 1]→ R, φ(t) = f(x+ t(y − x))

Elle est dérivable sur [0, 1], donc par l’égalité des accroissements finis usuelle, il existe c ∈]0, 1[ tel
que

φ(1)− φ(0) = φ′(c)

On pose z = x+ c(y − x) et on a le résultat.

2.2 Applications

2.2.1 Classe C1 et dérivées partielles

Dans le cas où E = Rn, l’égalité (1.1) donne une caractérisation simple de la classe C1 en fonction
des dérivées partielles, que l’inégalité des accroissements finis va nous permettre de démontrer.
Proposition 2.2.1. Soit U un ouvert de Rn, F un espace vectoriel normé sur R et f : U → F une
application. Alors f est de classe C1 sur U si et seulement si les dérivées partielles de f par rapport à
toutes les variables existent en tout point de Ω et sont continues sur Ω.

Preuve. On note {e1, . . . , en} la base canonique de Rn. Si f est de classe C1 sur U alors les dérivées
partielles de f par rapport à toutes les variables existent en tout point de U et sont données par

∂f

∂xi
(x) = Df(x) (ei)

Pour x, y ∈ Ω assez proches pour que [x, y] ⊂ U , on a



22 CHAPITRE 2. THÉORÈME DES ACCROISSEMENTS FINIS

∥∥∥∥ ∂f∂xi (y)− ∂f

∂xi
(x)

∥∥∥∥ = ‖Df(y) (ei)−Df(x) (ei)‖ ≤ ‖Df(y)−Df(x)‖L(Rn,F)

Donc la continuité de Df sur U entraine celle des dérivées partielles.
Supposons maintenant que les dérivées partielles de f par rapport à toutes les variables existent en
tout point de Ω et soient continues sur U . Alors l’application

Lx(h) =
n∑

i=1

hi
∂f

∂xi
(x)

est linéaire de Rn dans F , et donc aussi continue car Rn est de dimension finie. De plus l’application
x 7→ Lx est continue de U dans L (Rn, F ). En effet pour x, y ∈ Ω assez proches pour que [x, y] ⊂ U ,
on a

‖Ly − Lx‖L(Rn,F) = sup
‖h‖=1

∥∥∥∥∥
n∑

i=1

hi

(
∂f

∂xi
(y)− ∂f

∂xi
(x)

)∥∥∥∥∥
F

≤
n∑

i=1

∥∥∥∥ ∂f∂xi (y)− ∂f

∂xi
(x)

∥∥∥∥
F

→ 0 lorsque y → x

Il reste donc simplement à montrer que f est différentiable en tout point x de U et que Df(x) = Lx.
Pour x ∈ U et ρ > 0 tel que B(x, ρ) ⊂ U . Pour h ∈ B(x, ρ), on a

f(x+ h)− f(x) =
n∑

k=2

(f (x1 + h1, . . . , xk + hk, xk+1, . . . , xn)

−f (x1 + h1, . . . , xk−1 + hk−1, xk, . . . , xn))

+ f (x1 + h1, x2, . . . , xn)− f (x1, . . . , xn)

Pour simplifier, on notera cela

f(x+ h)− f(x) =
n∑

k=1

(f (x1 + h1, . . . , xk + hk, xk+1, . . . , xn)

−f (x1 + h1, . . . , xk−1 + hk−1, xk, . . . , xn))

Il suit donc que

f(x+ h)− f(x)−
n∑

i=1

hi
∂f

∂xi
(x) =

n∑
k=1

(φk (hk)− φk(0)) ,

où

φk(t) = f (x1 + h1, . . . , xk−1 + hk−1, xk + t, xk+1, . . . , xn)− t ∂f
∂xk

(x)

Par l’inégalité des accroissements finis, on a
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‖φk (hk)− φk(0)‖ ≤Mk |hk|

où

Mk = sup
t∈[0,hk]

∥∥∥∥ ∂f∂xk (x1 + h1, . . . , xk−1 + hk−1, xk + t, xk+1, . . . , xn)− ∂f

∂xk
(x)

∥∥∥∥ .
On en déduit que (en prenant la norme ‖.‖2 sur Rn et en utilisant Cauchy-Schwartz)

∥∥∥∥∥f(x+ h)− f(x)−
n∑

i=1

hi
∂f

∂xi
(x)

∥∥∥∥∥
F

≤ ‖h‖

(
n∑

k=1

M2
k

)1/2

Comme par continuité des dérivées partielles de f sur U les Mk tendent vers 0 quand h→ 0, on
obtient bien que f est différentiable en tout point x de U et que Df(x) = Lx.

2.2.2 Un théorème de point fixe

Théorème 2.2.1. Soit E un espace de Banach et f : E → E une application. On suppose qu’il existe
k ∈ [0, 1[ tel que pour tout x ∈ E,

‖Df(x)‖L(E) ≤ k

Alors f admet un unique point fixe dans E, i.e. il existe un unique x ∈ E tel que f(x) = x.

Preuve. Commençons par montrer l’unicité. Supposons qu’il existe deux points fixes distincts x et y
de f . C’est-à-dire qu’on a

f(x) = x, f(y) = y, x 6= y

Ceci est impossible car l’inégalité des accroissements finis nous donne

‖f(y)− f(x)‖ ≤ k‖y − x‖ < ‖y − x‖ = ‖f(y)− f(x)‖

C’est absurde.
Pour montrer l’unicité, considérons la suite ( un ) dans E définie par

u0 = 0, un+1 = f (un)

Cette suite converge si et seulement si la série

∑
n∈N∗

vn, vn = un − un−1

est convergente. Or d’après les théorème des accroissements finis, on a

‖un − un−1‖ = ‖f (un−1)− f
(
un−2‖ ≤ k‖un−1 − un−2

∥∥≤ . . . ≤ kn−1
∥∥u1 − u0‖
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Comme k ∈ [0, 1[, la série est absolument convergente et donc convergente du fait qu’on est dans un
espace de Banach.
Remarque On peut énoncer un théorème analogue pour f : Ω→ Ω où Ω est un ouvert convexe de E.



Chapitre 3
Différentielles secondes et supérieures

3.1 Différentielles secondes

Notation. Etant donnés E et F deux espaces vectoriels normés sur R, on notera Lk

(
Ek;F

)
l’espace

des applications k-multilinéaires continues de E × E × . . .× E ( k fois) dans F .
Définition 3.1.1. Soit E et F deux espaces vectoriels normés sur R,Ω un ouvert de E, x ∈ Ω et
f : Ω→ F une application. On dira que f est deux fois différentiable en x si elle est différentiable au
voisinage de x et si l’application x 7→ Df , définie au voisinage de x et à valeurs dans L(E;F

)
, est

différentiable en x. On notera D2f(x) la différentielle de Df au point x. De façon analogue, on dira
que f est deux fois différentiable sur Ω si f est différentiable sur Ω et l’application x 7→ Df(x),
définie sur Ω et à valeurs dans L(E;F

)
, est différentiable sur Ω. On notera D2f la différentielle

seconde de f , i.e. la différentielle de Df .

En chaque point x où elle est définie, la différentielle seconde de f est une application linéaire
continue de E dans L(E;F ). On a une identification canonique entre L(E;L(E;F )

)
et

L2(E × E;F ), espace des applications bilinéaires continues de E × E dans F . Plutôt que de
considérer

D2f(x) : h 7→ (k 7→ Df(x)(h)(k)),

on notera D2f(x)(h, k). Evidemment on pourrait craindre que l’isomorphisme canonique ci-dessus
ne le soit en fait pas : on aurait en effet pu poser D2f(x)(h, k) := D2f(x)(k)(h) au lieu de
D2f(x)(h)(k). Cela n’a en fait aucune importance comme le montre le théorème de Schwarz.
Théorème 3.1.1. (de Schwarz). Soit E et F deux espaces vectoriels normés sur R,Ω un ouvert de
E, x ∈ Ω, f : Ω→ F une application 2 fois différentiable en x. Alors

lim
(h,k)→(0,0),(h,k)∈E×E

f(x+ h+ k)− f(x+ h)− f(x+ k) + f(x)−D2f(x)(h, k)

(‖h‖+ ‖k‖)2
= 0.

Il suit en particulier que D2f(x) est une application bilinéaire continue symétrique, i.e.

D2f(x)(h, k) = D2f(x)(k, h)∀(h, k) ∈ E × E

Preuve. Soit ε > 0. Comme Df est différentiable en x, il existe δ > 0 tel que, pour ‖h‖ < 2δ on ait

25
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∥∥Df(x+ h)−Df(x)−D2f(x)(h)
∥∥
L(E;F) ≤ ε‖h‖. (3.1)

Soit h et k de normes inférieures à δ. On pose

gh(k) = f(x+ h+ k)− f(x+ h)− f(x+ k) + f(x)−D2f(x)(h, k)

En utilisant ce qu’on a vu sur la différentielle d’une application linéaire continue, il vient

Dgh(k) =Df(x+ h+ k)−Df(x+ k)−D2f(x)(h)

=
[
Df(x+ h+ k)−Df(x)−D2f(x)(h+ k)

]
−
[
Df(x+ k)−Df(x)−D2f(x)(k)

]
.

En utilisant (3.1), il suit pour ‖h‖ < δ et ‖k‖ < δ,

‖Dgh(k)‖L(E;F) ≤ ε(‖h+ k‖+ ‖k‖) ≤ 2ε(‖h‖+ ‖k‖)

On applique alors le théorème des accroissements finis à gh dans le segment [0, k] avec ‖k‖ < δ et
pour ‖h‖ < δ. Comme gh(0) = 0,

‖gh(k)‖ ≤ 2ε(‖h‖+ ‖k‖)‖k‖ ≤ 2ε(‖h‖+ ‖k‖)2

On a donc établi la première partie du théorème. Fixons maintenant h et k dans E. On a

0 = lim
t→0,t>0

f(x+ th+ tk)− f(x+ th)− f(x+ tk) + f(x)−D2f(x)(th, tk)

(‖th‖+ ‖tk‖)2

= lim
t→0,t>0

f(x+ th+ tk)− f(x+ th)− f(x+ tk) + f(x)− t2D2f(x)(h, k)

t2(‖h‖+ ‖k‖)2

=

(
lim

t→0,t>0

f(x+ th+ tk)− f(x+ th)− f(x+ tk) + f(x)

t2(‖h‖+ ‖k‖)2

)
− D2f(x)(h, k)

(‖h‖+ ‖k‖)2

On obtient donc

D2f(x)(h, k) = lim
t→0,t>0

f(x+ th+ tk)− f(x+ th)− f(x+ tk) + f(x)

t2

et comme l’expression dans la limite est symétrique en ( h, k ), il suit que D2f(x)(h, k) l’est
également.

3.2 Différentielles d’ordre supérieur

De proche en proche on définit les différentielles successives d’une application, si elles existent. On
dira que f est k fois différentiable en x si elle est k − 1 fois différentiable dans un voisinage de x et si
l’application Dk−1f est différentiable en x. On notera alors Dkf(x) sa différentielle. On la
considèrera comme une application k-multilinéaire continue de Ek dans F , i.e. un élément de
Lk

(
Ek;F

)
, plutôt que comme un élément de
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L(E;L(E; . . .L(E;F
)))

On a une version du théorème de Schwarz pour les dérivées d’ordre supérieur.
Théorème 3.2.1. (Généralisation du théorème de Schwarz). Soit E et F deux espaces vectoriels
normés sur R,Ω un ouvert de E, x ∈ Ω, f : Ω→ F une application k fois différentiable en x. Alors
Dkf(x) ∈ Lk

(
Ek;F

)
est une application k-linéaire continue symétrique, i.e. pour toute permutation

s de {1, 2, . . . , k},

Dkf(x) (h1, h2, . . . , hk) = Dkf(x)
(
hs(1), hs(2), . . . , hs(k)

)
, ∀ (h1, h2, . . . , hk) ∈ Ek

Preuve. Par récurrence. La propriété est vraie pour k = 2. Supposons qu’elle le soit pour
2 ≤ p ≤ k, k ≥ 2 donné. On a

Dk+1f(x) = DDkf(x)

et Dkf est à valeurs dans Lsym
k

(
Ek;F

)
, espace des applications k-linéaires continues symétriques de

Ek dans F . Donc si la permutation s de {1, 2, . . . , k + 1} laisse 1 invariant, le résultat est vrai. Si elle
ne laisse pas 1 invariant, elle est la composée de permutations laissant 1 invariant et de la permutation
qui ne fait qu’échanger 1 et 2 en laissant 3, . . . , k + 1 fixes. Il suffit donc de prouver que

Dk+1f(x) (h1, h2, h3, . . . , hk+1) = Dk+1f(x) (h2, h1, h3, . . . , hk+1)

Mais comme Dk+1f = D2Dk−1f , cette propriété découle du théorème de Schwarz.
Définition 3.2.1. Soit E et F deux espaces vectoriels normés sur R,Ω un ouvert de E et f : Ω→ F
une application. On dit que f est de classe Ck dans Ω (ou encore que f ∈ Ck(Ω) ) pour k ∈ N∗, si
elle admet des différentielles successives jusqu’à l’ordre k et si elles sont toutes continues sur Ω. On
dira que f est de classe C0 sur Ω (ou encore que f ∈ C0(Ω) ) si elle est continue sur Ω. On dira que f
est de classe C∞ sur Ω (ou encore que f ∈ C∞(Ω) ) si elle est de classe Ck sur Ω pour tout k ∈ N.
Remarque 3.2.1. Comme différentiabilité implique continuité, f est de classe Ck dans Ω si et
seulement si elle admet des différentielles successives jusqu’à l’ordre k et si Dkf est continue sur Ω.
De même f est de classe C∞ dans Ω si et seulement si elle admet des différentielles successives à tous
les ordres en tout point de Ω. On voit aussi que si k > l,

f ∈ Ck(Ω)⇒ f ∈ Cl(Ω)

3.2.1 Cas où E = Rn

Dans cette situation, on peut donner une expression de différentielles k-ième en fonction des dérivées
partielles d’ordre k de la fonction.
Proposition 3.2.1. Soit Ω un ouvert de E = Rn, F un espace vectoriel normé sur R et f : Ω→ F
une application. Si f est k fois différentiable en un point x de Ω, alors elle admet au voisinage de x
toutes les dérivées partielles jusqu’à l’ordre k − 1 et en x toutes les dérivées partielles d’ordre k. De
plus la différentielle k-ième de f en x s’écrit

Dkf(x)
(
h1, . . . , hk

)
=

n∑
i1=1

. . .

n∑
ik=1

h1i1 . . . h
k
ik

∂kf

∂xi1 . . . ∂xik
(x)
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Preuve C’est une conséquence directe de l’expression de la différentielle de f en fonction de ses
dérivées partielles. On peut raisonner par récurrence en appliquant ce résultat à chaque étape.

On a aussi un caractérisation du fait qu’une fonction soit Ck en fonction de la continuité de ses
dérivées partielles k-ièmes.
Proposition 3.2.2. Soit Ω un ouvert de E = Rn, F un espace vectoriel normé sur R et f : Ω→ F
une application. Alors f est Ck sur Ω si et seulement si elle admet en tout point de Ω des dérivées
partielles par rapport à toutes les variables jusqu’à l’ordre k et ses dérivées partielles d’ordre k sont
toutes continues sur Ω.

Preuve. On applique par récurrence la caractérisation des fonctions de classe C1 en termes de
continuité de leurs dérivées partielles.

3.3 Quelques exemples

Voici quelques exemples de dérivées successives. Les vérifications sont de bonnes applications du
cours et peuvent être traitées en exercices.

3.3.1 Application bilinéaire continue

Soit E,F et G trois espaces vectoriels normés sur R et f : E × F → G une application bilinéaire
continue. Alors f ∈ C∞(E × F ) et

Df(x, y)(h, k) = f(x, k) + f(h, y),

D2f(x, y) ((h1, k1) , (h2, k2)) = f (h2, k1) + f (h1, k2) ,

Dkf ≡ 0 pour k ≥ 3.

3.3.2 Application quadratique continue

Soit E et F deux espaces vectoriels normés sur R sur R, φ : E2 → F une application bilinéaire
continue. On définit l’application quadratique q : E → F par q(x) = φ(x, x). Alors q ∈ C∞(E) et

Dq(x)(h) = φ(x, h) + φ(h, x),

D2q(x)(h, k) = φ(k, h) + φ(h, k),

Dkq ≡ 0 pour k ≥ 3.

3.3.3 Application multilinéaire continue

Une application n-multilinéaire continue entre des espaces vectoriels normés sur R :
E1 × E2 × . . .× En et F est C∞ sur E1 × E2 × . . .× En et toutes ses dérivées d’ordre k ≥ n+ 1
sont nulles. On pourra "s’amuser" à trouver l’expression de ses dérivées successives d’ordres
inférieurs ou égaux à n.
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3.4 Formules de Taylor

On rappelle tout d’abord le résultat essentiel qui est à la base des formules de Taylor avec reste
intégral :
Théorème 3.4.1. (Théorème fondamental du calcul différentiel). Soit F un espace de Banach,
φ : [a, b]→ F une application de classe Cn+1 sur [a, b]. Alors

φ(b) = φ(a) +

∫ b

a

φ′(t)dt

Théorème 3.4.2. (Formule de Taylor avec reste intégral). Soit E un espace vectoriel normé sur R et
F un espace de Banach sur R,Ω un ouvert de E et f : Ω→ F une application de classe Cn+1 sur Ω.
Soit x ∈ Ω et h ∈ E tels que le segment [x, x+ h] soit contenu dans Ω. Alors

f(x+ h) =f(x) +Df(x)(h) +
1

2!
D2f(x)(h, h) + . . .+

1

n!
Dnf(x) (h, h, . . . , h)︸ ︷︷ ︸

n fois

+
1

n!

∫ 1

0

(1− t)nDn+1f(x+ th) (h, h, . . . , h)︸ ︷︷ ︸
n+1 fois

dt.

Théorème 3.4.3. (Formule de Taylor avec reste de Lagrange). Soit E et F deux espaces vectoriels
normés sur R,Ω un ouvert de E et f : Ω→ F une application n+ 1 différentiable sur Ω. On suppose
qu’il existe C > 0 telle que

∥∥Dn+1f(y)
∥∥
Ln+1(En+1;F )

≤ C pour tout y ∈ Ω

Soit x ∈ Ω et h ∈ E tels que le segment [x, x+ h] soit contenu dans Ω. Alors

∥∥∥∥f(x+ h)− f(x)−Df(x)(h)− 1

2!
D2f(x)(h, h)− . . .− 1

n!
Dnf(x)(h, h, . . . , h)

∥∥∥∥
≤ C‖h‖n+1

(n+ 1)!

En fait on peut encore affaiblir les hypothèses si on accepte de perdre un peu de contrôle sur le reste.
La formule de Taylor qui suit est essentiellement équivalente à la définition de la différentielle n-ième
de f en x. Elle donne un développement limité de f en x à l’ordre n avec un minimum de contrôle
sur le reste.
Théorème 3.4.4. (Développement limité ou formule de Taylor-Young). Soit E et F deux espaces
vectoriels normés sur R,Ω un ouvert de E et f : Ω→ F une application n fois différentiable sur Ω,
admettant en x une différentielle ( n+ 1 )-ième. Alors

f(x+ h) =f(x) +Df(x)(h) +
1

2!
D2f(x)(h, h) + . . .+

1

(n+ 1)!
Dn+1f(x)(h, h, . . . , h)

+ ‖h‖n+1ε(h)

où ε(h)→ 0 lorsque h→ 0.

Preuve du Théorème 3.4. On pose
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ψ(t) =f(x+ th) + (1− t)Df(x+ th)(h) +
(1− t)2

2!
D2f(x+ th)(h, h)

+ . . .+
(1− t)n

n!
Dnf(x+ th)(h, h, . . . , h)

Alors Ψ est de classe C1 sur [0, 1] et

ψ′(t) =
(1− t)n

n!
Dn+1f(x+ th)(h, h, . . . , h)

La formule de Taylor avec reste intégral se réduit alors à

ψ(1)− ψ(0) =

∫ 1

0

ψ′(t)dt

Preuve du Théorème 3.5. On pose

ψ(t) =f(x+ th) + (1− t)Df(x+ th)(h) +
(1− t)2

2!
D2f(x+ th)(h, h)

+ . . .+
(1− t)n

n!
Dnf(x+ th)(h, h, . . . , h)

g(t) =− C(1− t)n+1

(n+ 1)!

On a pour tout t ∈ [0, 1]

‖ψ′(t)‖ ≤ g′(t)

et par le théorème 2.1, il suit

‖ψ(1)− ψ(0)‖ ≤ g(1)− g(0)

ce qui donne le résultat.
Preuve du Théorème 3.6. On sait que le résultat est vrai pour n = 1 d’après la définition de la
différentiabilité de f en x. On procède maintenant par récurrence. Supposons que le théorème soit
vrai pour n, i.e. avec une dernière dérivée d’ordre n et un reste de la forme ‖h‖nε(h). On pose
φ(h) = f(x+ h)− f(x)−Df(x)(h)− 1

2!
D2f(x)(h, h)− . . .− 1

(n+1)!
Dn+1f(x)(h, h, . . . , h).

On va calculer la différentielle de φ :

Dφ(h)(k) = Df(x+ h)(k)−Df(x)(k)−D2f(x)(h, k)− . . .− 1

n!
Dn+1f(x)(h, h, . . . , h, k)

On pose alors g = Df , on a

Dφ(h) = g(x+ h)− g(x)−Dg(x)(h)− . . .− 1

n!
Dng(x)(h, h, . . . , h)

qui est une égalité dans L(E,F ). On applique alors l’hypothèse de récurrence à Dφ(h) :
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Dφ(h) = ‖h‖nε(h)

où ε(h)→ 0 dans L(E,F ) lorsque h→ 0. C’est-à-dire que pour tout η > 0, il existe δ > 0 tel que

‖h‖ < δ ⇒ ‖Dφ(h)‖ ≤ η‖h‖n

D’après l’inégalité des accroissements finis, il suit que pour tout h ∈ E tel que ‖h‖ < δ, on a

‖Φ(h)− φ(0)‖ ≤ η‖h‖n+1

Et comme φ(0) = 0, on a pour tout h ∈ E tel que ‖h‖ < δ,

‖Φ(h)‖ ≤ η‖h‖n+1

Le résultat est donc démontré.

3.5 Extrema locaux

Définition 3.5.1. Soit E un espace vectoriel normé sur R,Ω un ouvert de E et f : Ω→ R. On dit que
f admet en x ∈ Ω un minimum local s’il existe un voisinage ouvert U de x tel que pour tout y ∈ U on
ait f(y) ≥ f(x). On dit que f admet en x ∈ Ω un maximum local s’il existe un voisinage ouvert U de
x tel que pour tout y ∈ U on ait f(y) ≤ f(x). Dans les deux cas on parle d’extremum local.
L’extremum local est dit strict si on peut trouver un voisinage ouvert de x dans lequel les inégalités
ci-dessus soient strictes pour y 6= x.
Définition 3.5.2. Soit E un espace vectoriel normé sur R,Ω un ouvert de E et f : Ω→ R une
application. On dit que f admet en x ∈ Ω un point critique si f est différentiable en x et si
Df(x) = 0.
Proposition 3.5.1. (Condition nécessaire d’extremum local : premier ordre). Soit E un espace
vectoriel normé sur R,Ω un ouvert de E et f : Ω→ R une application. Si f admet en x ∈ Ω un
extremum local et si f est différentiable en x, alors x est un point critique de f .

Preuve. On donne la preuve dans le cas d’un minimum local. Remarquons tout d’abord que
Df(x) = 0 si et seulement si pour tout v ∈ E, v 6= 0, on a

∂f

∂v
(x) = 0.

C’est clair du fait que

∂f

∂v
(x) = Df(x)(v).

Soit donc v ∈ E, v 6= 0. On sait que la dérivée directionnelle de f en x dans la direction de v existe,
du fait que f est différentiable en x. C’est-à-dire que

lim
t→0

f(x+ tv)− f(x)

t
existe dans R
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Pour t > 0, on a

f(x+ tv)− f(x)

t
≥ 0

et pour t < 0,

f(x+ tv)− f(x)

t
≤ 0.

Il suit que

∂f

∂v
(x) = 0.

Le résultat est démontré.
Proposition 3.5.2. (Condition nécessaire d’extremum local : deuxième ordre). Soit E un espace
vectoriel normé sur R,Ω un ouvert de E et f : Ω→ R une application différentiable. Si f admet en
x ∈ Ω un extremum local et si f est deux fois différentiable en x, alors x est un point critique de f et
la forme quadratique D2f(x)(h, h) est positive, i.e. D2f(x)(h, h) ≥ 0 pour tout h ∈ E.

Preuve. On écrit la formule de Taylor-Young à l’ordre 2 :

f(x+ h) = f(x) +Df(x)(h) +
1

2
D2f(x)(h, h) + ‖h‖2ε(h),

où ε(h)→ 0 lorsque h→ 0. On sait de plus que x est un point critique, donc

f(x+ h)− f(x) =
1

2
D2f(x)(h, h) + ‖h‖2ε(h) ≥ 0 pour tout h assez petit.

Soit un vecteur v de norme 1 donné, si D2f(x)(v, v) 6= 0, alors pour t assez petit

0 ≤ f(x+ tv)− f(x)

≤ t2
(

1

2
D2f(x)(v, v) + ‖v‖2ε(tv)

)
et on doit donc avoir D2f(x)(v, v) > 0.
Afin de pouvoir énoncer et surtout démontrer une condition suffisante d’extremum local strict, nous
aurons besoin du résultat suivant.
Théorème 3.5.1. Soit E un espace de Banach sur R et φ : E × E → R une forme quadratique
définie positive, i.e. telle que pour tout h 6= 0, φ(h, h) > 0. Alors il existe K > 0 tel que pour tout
h ∈ E on ait

φ(h, h) ≥ K‖h‖2.

Preuve. En dimension finie, on peut utiliser la compacité de la sphère unité. En effet l’application de
S1 dans ]0,+∞ [ qui à v associe φ(v, v) est continue sur S1 qui est compacte, donc elle admet sur S1

un minimum. Comme ce minimum est la valeur de φ(v, v) pour un certain v ∈ S1, il est strictement
positif, i.e. il existe K > 0 tel que pour tout v ∈ S1 on ait φ(v, v) ≥ K. Maintenant pour h 6= 0 on a
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φ(h, h) = ‖h‖2φ
(

h

‖h‖
,
h

‖h‖

)
≥ K‖h‖2.

En dimension infinie, cette preuve n’est plus valable du fait que la sphère unité n’est plus compacte.

Par contre une autre preuve, basée sur l’identification entre formes bilinéaires et applications linéaires
à valeurs dans l’espace des formes linéaires, fonctionne que la dimension soit finie ou non. Le fait
que φ(h, h) soit définie positive implique que la forme bilinéaire φ est non dégénérée, i.e. que
l’application

x 7→ φ̃x

où

φ̃x(y) = φ(x, y)

est un isomorphisme de E sur son dual topologique E ′ = L(E,R). Donc il existe C1 > 0 tel que
pour tout x ∈ E

∥∥∥φ̃x

∥∥∥
L(E,R)

= sup
‖y‖=1

‖φ(x, y)‖ ≥ C1‖x‖

Soit x 6= 0 donné. Par définition de la borne supérieure, il existe y ∈ S1 tel que

‖φ(x, y)‖ ≥ C1

2
‖x‖

En utilisant l’inégalité de Cauchy-Schwarz, on obtient

C2
1

4
‖x‖2 ≤ ‖φ(x, x)‖‖φ(y, y)‖

Par ailleurs, φ étant continue, on sait qu’il existe C2 > 0 tel que

‖φ(u, v)‖ ≤ C2‖u‖‖v‖

D’où

C2
1

4
‖x‖2 ≤ ‖φ(x, x)‖C2‖y‖2 = C2‖φ(x, x)‖

On obtient donc

‖φ(x, x)‖ ≥ C2
1

4C2

‖x‖2

Comme C1 et C2 sont indépendants de x et du choix de y, le résultat est démontré.
Théorème 3.5.2. (Condition suffisante d’extremum local). Soit E un espace de Banach, Ω un ouvert
de E, x ∈ Ω et f : Ω→ R une application différentiable, deux fois différentiable en x. Si :
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1. x est un point critique de f ;

2. la forme quadratique D2f(x)(h, h) est définie positive (resp. définie négative) ;
alors f admet en x un minimum (resp. maximum) local strict.

Preuve. On la fait dans le cas d’un minimum. Elle utilise le théorème précédent. Comme il existe
K > 0 tel que D2f(x)(h, h) ≥ K‖h‖2 pour tout h ∈ E, alors

f(x+ h)− f(x) = D2f(x)(h, h) + ‖h‖2ε(h) ≥ ‖h‖2(K − ‖ε(h)‖)

Comme ε(h)→ 0 lorsque h→, il existe η > 0 tel que pour ‖h |< η on ait ‖ε(h)‖ ≤ K/2. Il suit que
pour ‖h‖ < η on a

f(x+ h)− f(x) ≥ ‖h‖2K
2
> 0

La fonction f admet donc en x un minimum local strict.
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4.1 Inversion locale, fonctions implicites

4.1.1 Difféomorphismes, inversion locale, inversion globale

Définition 4.1.1. Soit E et F deux espaces de Banach, U un ouvert de E et V un ouvert de F . On dit
qu’une application φ : U → V est un Ck-difféomorphisme de U sur V si :

1. φ est une bijection de U sur V ;

2. φ est de classe Ck sur U ;

3. φ−1 est Ck sur V .

Théorème 4.1.1. (Inversion locale). Soit E et F deux espaces de Banach, Ω un ouvert de E et φ une
application de Ω dans F de classe Ck. Soit x ∈ Ω, on suppose que Df(x) est un isomorphisme de E
sur F (i.e. une application linéaire continue et d’inverse continu). Alors il existe U un voisinage
ouvert de x dans Ω et V un voisinage ouvert de f(x) dans F tels que φ soit un Ck-difféomorphisme
de U sur V .

Preuve. Quitte à composer f avec des translations, on peut supposer que x = 0E et f(x) = 0F . On a
donc f(0) = 0 et la différentielle de f au point 0 est un isomorphisme de E dans F ; une telle
application est un C∞-difféomorphisme de E dans F . Il est donc équivalent de trouver un voisinage
U de 0E et un voisinage V de 0F tels que f soit un Ck-difféomorphisme de U dans V , et de trouver
deux voisinages U et W de 0E tels que (Df(0))−1 ◦ f soit un Ck-difféomorphisme de U dans W (à
noter que la différentielle en 0 de (Df(0))−1 ◦ f est l’identité). On peut donc sans perte de généralité
supposer que E = F et que Df(0) = IdE .

Soit ϕ = Id− f . La différentielle de ϕ est nulle en 0 et, comme cette différentielle est continue, il
existe un réel strictement positif r tel que la boule fermée B̄(0, r) de centre 0 et de rayon r soit
incluse dans Ω et que la norme de la différentielle de ϕ soit toujours inférieure à 1/2 sur cette boule.
Définissons deux voisinages ouverts U et W de 0 par W = B(0, r/2), U = B(0, r) ∩ f−1(W )
(rappelons que f étant continue, f−1(W ) est ouvert) et démontrons que de U dans W, f est bijective.

Pour prouver la surjectivité, considérons, pour tout point y de W , la fonction ϕy définie sur B(0, r)
par ϕy(x) = y + ϕ(x).

L’inégalité des accroissements finis montre que ϕ est 1/2-lipschitzienne sur B̄(0, r), i.e.
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∀x1, x2 ∈ B̄(0, r), ‖ϕ (x2)− ϕ (x1)‖ ≤
1

2
‖x2 − x1‖ .

On en déduit d’une part que sa translatée ϕy l’est aussi et d’autre part, que ϕy envoie B̄(0, r) dans
elle-même, et même dans B(0, r), car pour tout x dans B̄(0, r) la norme de ϕ(x) est inférieure ou
égale à r/2 et celle de y strictement inférieure à r/2. Le théorème du point fixe montre l’existence
d’un point z appartenant à B̄(0, r) tel que ϕy(z) = z, donc envoyé par f sur y. Et comme ϕy(z) = z,
on a z ∈ B(0, r) et de plus f(z) = y ∈ W donc z ∈ f−1(W ). On a donc trouvé z ∈ U tel que
f(z) = y.

L’injectivité s’obtient en utilisant à nouveau que ϕ est 1/2 lipschitzienne. Pour tous x1 et x2 dans V ,
si l’on note y1 et y2 leurs images par f , on a

‖x1 − x2‖ = ‖ϕ (x1) + f (x1)− ϕ (x2)− f (x2)‖ ≤
1

2
‖x1 − x2‖+ ‖y1 − y2‖

ce qui se réécrit

‖x1 − x2‖ ≤ 2 ‖y1 − y2‖

et permet de conclure.
Il reste maintenant à montrer que la fonction réciproque de f est de classe Ck sur W . Remarquons
d’abord que pour tout x dans U , l’application linéaire Df(x) est inversible et d’inverse continu. En
effet, Df(x) = IdE −Dϕ(x) et Dϕ(x) est de norme inférieure à 1/2, donc la série

∑
n∈N

(Dϕ(x))n

est convergente et sa somme est inverse de Df(x), de norme inférieure à 2 .
Soit y dans W et x son antécédent dans U par f , démontrons qu’au point y, f−1 est différentiable et
que sa différentielle n’est autre que l’inverse de Df(x). Pour tout vecteur k de E tel que y + k soit
encore dans W , notons x+ h l’antécédent dans U de y + k par f. Comme

k = f(x+ h)− f(x) = Df(x)(h) + ‖h‖ε(h)

on en déduit

f−1(y + k)− f−1(y) = h = (Df(x))−1(k − ‖h‖ε(h)) = (Df(x))−1(k) + ‖k‖ε(k)

la dernière égalité venant du fait (démontré plus haut dans la preuve d’injectivité) que ‖h‖ ≤ 2‖k‖.
On a donc montré que f−1 est différentiable dans W et que pour tout y ∈ W ,

D
(
f−1
)

(y) =
(
Df

(
f−1(y)

)−1
C’est-à-dire que

D
(
f−1
)

= (Df)−1 ◦ f−1
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Il reste encore à montrer que la fonction réciproque de f est de classe Ck. On vient de prouver
l’existence de la différentielle de la réciproque de f en montrant qu’elle était la composée de trois
fonctions : la fonction f−1, la différentielle de f , et la "fonction inverse" qui à tout isomorphisme
bicontinu de E associe son inverse. La fonction inverse est infiniment différentiable, f est de classe
Ck et la réciproque de f est continue (car différentiable), on en déduit que la réciproque de f est de
classe C1. De proche en proche, on vérifie que la réciproque de f est de classe Ck.
Théorème 4.1.2. (Inversion globale). Soit E et F deux espaces de Banach, Ω un ouvert de E et φ
une application de Ω dans F de classe Ck. Si f est injective et si pour tout x ∈ Ω, Df(x) est un
isomorphisme de E sur F , alors f(Ω) est un ouvert de F et φ est un Ck difféomorphisme de Ω sur
f(Ω).

Preuve. C’est une conséquence directe du théorème d’inversion locale.

4.2 Théorème des fonctions implicites

Théorème 4.2.1. (des fonctions implicites). Soit E,F et G trois espaces de Banach et f une
application de classe Ck définie sur un ouvert Ω de E × F et à valeurs dans G. Soit ( x0, y0 ) un
point de Ω tel que f (x0, y0) = 0 et tel que la différentielle partielle Dyf (x0, y0) (i.e. la différentielle
en y0 de y 7→ f (x0, y) ) soit un isomorphisme (i.e. une application linéaire bijective continue et
d’inverse continu) de F dans G. Il existe un voisinage ouvert U de x0 dans E, un voisinage ouvert V
de y0 dans F et une fonction φ de classe Ck définie sur U à valeurs dans F , tels que :

1. U × V ⊂ Ω,

2. {(x, y) ∈ U × V ; f(x, y) = 0} = {(x, φ(x);x ∈ U}, autrement dit

((x, y) ∈ U × V et f(x, y) = 0)⇔ (x ∈ U et y = φ(x)).

La différentielle de φ en un point x ∈ U est donnée par

Dφ(x) = − (Dyf(x, φ(x)))−1 ◦Dxf(x, φ(x))

Preuve. Le principe consiste à traduire la question sous une forme telle qu’il devient possible
d’appliquer le théorème d’inversion locale. On considère l’application ψ1, de Ω dans E ×G, définie
par :

ψ1(x, y) = (x, f(x, y))

Cette application est de classe Ck et sa différentielle au point ( x0, y0 ) est un isomorphisme de E × F
sur E ×G. En effet, on a

Dψ1 (x0, y0) (h, k) = (h,Dxf (x0, y0) (h) +Dyf (x0, y0) (k)) .

La bijectivité de Dψ1 (x0, y0) est simple à montrer. Soit v ∈ E,w ∈ G et cherchons un antécédent
(h, k) à (v, w) par Dψ1 (x0, y0). Le seul choix possible de h est h = v, puis on utilise le fait que
Dyf (x0, y0) est un isomorphisme de F sur G : il existe un unique k ∈ F tel que

Dxf (x0, y0) (v) +Dyf (x0, y0) (k) = w
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On a donc que Dψ1 (x0, y0) est linéaire continue. Par le théorème de Banach-Schauder (théorème de
l’application ouverte), elle est ouverte, d’où il suit que Dψ1 (x0, y0)

−1 est continue 1.

Le théorème d’inversion locale montre que ψ1 se restreint en un difféomorphisme de classe Ck entre
un ouvert W × V dans E × F , contenant ( x0, y0 ), et un ouvert O dans E ×G contenant ( x0, 0 ) et
nécessairement inclus dans W ×G.

Ceci se traduit par l’existence d’une application ψ2 de classe Ck, de O dans F , vérifiant :

∀(x, z) ∈ O (x, ψ2(x, z)) ∈ W × V et ∀(x, y) ∈ W × V f(x, y) = z ⇔ ψ2(x, z) = y.

On définit alors l’application U = O ∩ {z = 0} qui est un ouvert de E car l’image de O ouvert de
E × F par une projection, qui est une application linéaire continue surjective et donc ouverte. Par
construction, U ⊂ W . L’application φ, de U dans V définie par φ(x) = ψ2(x, 0), vérifie alors les
propriétés annoncées.

Calculons maintenant la différentielle de φ. On différencie simplement la relation

f(x, φ(x)) = 0

On obtient :

Dxf(x, φ(x)) +Dyf(x, φ(x)) ◦Dφ(x) = 0

d’où le résultat.
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