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Chapitre 1
Espaces de Banach et Applications linéaires

Table des matières

Exercice 1

Soit E un espace vectoriel normé sur K = R ou C.

1. Montrer que tout sous-ensemble compact de E est un fermé borné de E.

2. Montrer que si E est de dimension finie, alors E est un espace de Banach.

3. Montrer que si E est de dimension finie, alors toutes les normes (possible) sur E sont
équivalentes.

4. (i) Soit F un sous espace vectoriel propore fermé de E. Montrer que pour tout ε > 0, il existe
x ∈ E tel que ‖x‖ = 1 et dist(x, F ) > 1− ε
(ii) En déduire que si la boule unité fermée de E est compact, alors E est de dimension finie.

Solution :

1. Soit K une partie compacte de E,
K est fermé :
Soient (xn) ⊆ K et x ∈ E tel que : xn −→ x. Puisque K est compact, alors il existe une
sous-suite

(
xφ(n)

)
de la suite (xn) telle que xφ(n) −→ y ∈ K.(φ : N −→ N strictement

croissante).
Le fait que xn −→ x implique que xφ(n) −→ x, et par l’unicité de la limite on en déduit que
y = x, donc x ∈ K, par suite K est un fermée de E.
K est borné : Supposons, par l’absurde, que K n’est pas bornée dans E, C’est-à-dire :

(∀M > 0), (∃x ∈ K) : ‖x‖ > M

Alors (∀n ∈ N), (∃xn ∈ K) : ‖xn‖ > n. Puisque K est compact, il existe une application
φ : N −→ N strictement croissante tel que :

(
xφ(n)

)
soit convergente, en particulier elle est bornée.

Mais on a : (∀n ∈ N) :
∥∥xφ(n)∥∥ > φ(n) > n, et ceci contredit le fait que ( xφ(n) ) est bornée.

Conclusion : K est bornée dans E.
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6 CHAPITRE 1. ESPACES DE BANACH ET APPLICATIONS LINÉAIRES

2. On suppose que E est de dimension finie : dim(E) = n et montrons que E est un espace de
Banach.
Si d = 0, alors la seule suite appartient à E est la suite constante nulle qui est convergente dans
(E, ‖‖.)estdeBanach.supposonsdoncque dim(E) = n > 0.
Puisque la dimension de E est finie, alors il suffit de prouver que E est complet pour une norme bien
choisit. dans cette question on munie E par la norme ‖.‖1 définie pour un vecteur
x ∈ E de de la forme x =

∑d
i=1 λi.ei, par : ‖x‖1 =

∑d
i=1 |λi|.

Soit (xn)n une suite de Cauchy dans (E, ‖ · ‖1), alors pour tout n ∈ N, on a :

xn ∈ E =⇒ ∃ (λ1,n, . . . , λd,n) ∈ Kd : xn =
∑d

i=1 λi,n.ei et donc (xn)n =
(∑d

i=1 λi,n.ei

)
n
. d’ailleurs

pour tout i ∈ {1, . . . , d} la suite (λi,n)n est une suite de Cauchy dans ( K, |.|), en effet ;

(∀ε > 0), (∃N ∈ N),
(
∀(n,m) ∈ N2

)
:

{
n > N
m > N

=⇒ |λi,n − λi,m| 6 ‖xn − xm‖1 < ε

Or K est complet, d’où elle est convergente, soit li = limn→+∞ li,n, alors on a :

(∀ε > 0), (∃Ni ∈ N) , (∀n ∈ N) : n > Ni =⇒ |λi,n − li| <
ε

d

On a : ‖xn − l‖1 =
∥∥∥∑d

i=1 (λi,n − li) · ei
∥∥∥
1

=
∑d

i=1 |λi,n − li|.

Par suite si on pose, n0 = max16i6dNi et l =
∑d

i=1 li · ei, alors pour tout n ∈ N, on a :

n > n0 =⇒ ∀i ∈ {1, . . . , d} : n0 > Ni

=⇒ ∀i ∈ {1, . . . , d} : |λi,n − li| <
ε

d
=⇒ ‖xn − l‖1 < ε

Ainsi (xn)n est convergente dans (E, ‖.‖1).
Conclusion : (E, ‖.‖1) est complet.
3. On suppose que E est de dimension finie, soit dim(E) = n.

Soit B = (e1, . . . , en) une base de E.
On définit sur E la norme ‖.‖∞ telle que ‖x‖∞ = ‖

∑n
i=1 xiei‖∞ = max16i6n |xi|, avec

x =
∑n

i=1 xiei et (xi)16i6n ⊆ K.
Soit N une norme sur E,

– Montrons d’abord que : N : (E, ‖.‖∞) −→ (R, ||.)estcontinue.

En effet, soient x =
∑n

i=1 xiei et y =
∑n

i=1 yiei deux éléments de E,C = max16i6nN (ei) (> 0) et
M = C.n ; on a :

N(x− y) = N

(
n∑
i=1

(xi − yi) ei

)
≤

n∑
i=1

N ((xi − yi) ei)

≤
n∑
i=1

|xi − yi|N (ei)

≤
n∑
i=1

‖x− y‖∞C

où C = max16i6nN (ei) (> 0). Donc
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N(x− y) 6 nC‖x− y‖∞

D’autre part, d’après l’inégalité triangulaire inverse de la norme N on a :
|N(x)−N(y)| 6 N(x− y) =⇒ |N(x)−N(y)| 6M‖x− y‖∞ où M = nC.
Alors N est une application M - Lipschitzienne, par suite elle est continue.

– Soit S := S‖.‖∞ = {x ∈ E : ‖x‖∞ = 1} la sphère unité de ( E, ‖.‖∞ ).
S est fermé car c’est l’image réciproque de {1}, qui est fermé, par l’application continue
x 7→ ‖x‖∞.
S est bornée dans (E, ‖.‖∞).
Puisque E est de dimension finie, donc S est un compact de ( E, ‖.‖∞ ).
Le fait que N est une application continue sur le compact S montre que N est bornée et atteint ses
bornes dans S. C-à-d il existe (a, b) ∈ S2 telles que

m = N(a) 6 N(x) 6 N(b) = M pour tout x ∈ S

Puisque N(a) 6= 0 et N(b) 6= 0, donc m > 0 et M > 0.
D’autre part, pour tout x ∈ E\{0}, on a :

x

‖x‖∞
∈ S =⇒ m 6 N

(
x

‖x‖∞

)
6M =⇒ m 6

1

‖x‖∞
·N(x) 6M =⇒ m·‖x‖∞ 6 N(x) 6M.‖x‖∞

Et puisque la dernière inégalité est vrai pour x = 0E , alors on conclut que :

(∀x ∈ E)m.‖x‖∞ 6 N(x) 6M.‖x‖∞

Donc les normes N et ‖.‖∞ sont équivalentes.
Conclusion : toute les normes sur un K-espace vectoriel de dimension finie sont équivalentes.
4. (i) : Soient ε > 0 et u ∈ E tel que : u /∈ F , alors d(u, F ) > 0 ; Car F est un sous-espace vectoriel
propre fermée de E. Posons δ = d(u, F ).

1 Si 1− ε 6 0, (⇐⇒ ε > 1), on a : u 6= 0E , alors il suffit de choisir x = u
‖u‖ , et dans ce cas ‖x‖ = 1

et d(x, F ) > 0 > 1− ε.
2 Si 1− ε > 0, (⇐⇒ ε < 1), d’après la propriété caractéristique de la borne inférieure, il existe
v0 ∈ F tel que :

δ 6 ‖u− v0‖ < δ +
δε

1− ε
⇐⇒ δ 6 ‖u− v0‖ <

δ

1− ε
=⇒ 1

‖u− v0‖
>

1− ε
δ

Posons x = u−v0
‖u−v0‖ , alors ‖x‖ = 1 et pour tout y ∈ F , on a :

‖x−y‖ =

∥∥∥∥ u− v0
‖u− v0‖

− y
∥∥∥∥ =
‖u− (v0 + ‖u− v0‖ · y)‖

‖u− v0‖
=⇒ ‖x−y‖ > δ·1− ε

δ
=⇒ ‖x−y‖ > 1−ε

Car v0 + ‖u− v0‖ .y ∈ F , donc ‖x‖ = 1 et d(x, F ) > 1− ε.
(ii) : On suppose que la boule fermée unité de E est compact et E est de dimension infinie, donc tout
sous-espace de E de dimension finie est propre.
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On choisit d’abord un vecteur unitaire arbitraire x0 et on applique (i) ; (pour ε = 1
2

) à la droite
F0 := vect {x0} qu’il engendre (elle est de dimension finie donc fermée dans E) : il existe un vecteur
unitaire x1 tel que : d (x1, F0) > 1

2
. Puis on applique (i) au plan F1 engendré par ( x0, x1 ) (elle est de

dimension finie donc fermée dans E, il existe un vecteur unitaire x2 tel que : d (x2, F1) > 1
2
, etc.., On

obtient ainsi dans la boule unité fermée une suite (xn)n∈N qui vérifie par construction :

∀(n,m) : n 6= m =⇒ d (xn, xm) >
1

2
(1.1)

donc la suite (xn) ⊆ Bf (0E, 1) qui ne possède aucune sous-suite convergente , absurde ; car s’il
existe une application φ : N −→ N strictement croissante telle que :

(
xφ(n)

)
est convergente, alors (

xφ(n) ) sera de Cauchy, et ceci contradictoire avec (1.1).
Ainsi E est de dimension finie.

Exercice 2

Soit n ∈ N. Montrer qu’il existe une constante Cn > 0 telle que pour tout pour tout polynôme
unitaire de degré n, P ∈ Rn[X], on ait

∫ 1

0
|P (t)|dt ≥ Cn.

Solution :

Soit n ∈ N, on considère E = Rn[X] l’espce vectoriel des polynômes de degré inférier ou égale à n.
On considère sur E les normes suivantes : pour P (X) =

∑n
i=0 aiX

i

N1(P ) =
n∑
i=0

|ai| et N2(P ) =

∫ 1

0

|P (t)|dt

Puisque dim(E) <∞, alors les deux normes N1 et N2 sont équivalentes.
Donc il existe ∃Cn > 0 tel que N2(P ) ≥ CnN1(P ) pour tout P ∈ E.
Pour un polynôme unitaire P = a0 + . . . .+ an−1X

n +Xn on a N1(P ) ≥ 1.
D’où

∫ 1

0
|P (t)|dt ≥ Cn.

Exercice 3

(Application linéaire non continue)

1. Soit E := C∞([0, 1],R). On considére l’application Dérivation D : E → E définie par
D(f) = f ′ pour tout f ∈ E. Montrer que D n’est jamais continue sur E ( quelle que soit la
norme dont on munit E ).

2. Soit E = Rn[X], l’espace des polynômes à coefficients réels et de degré inférieur ou égale à n,
muni de la norme ‖P‖ =

∑n
k=0 |ak| où P (X) =

∑n
k=0 akX

k.
Montrer que l’application D : E → E, définie par D(P ) = P ′, est continue.

3. Soit E = R[X], l’espace des polynômes à coefficients réels muni de la norme
‖P‖ =

∑n
k=0 |ak| où P (X) =

∑n
k=0 akX

k.
Montrer que l’application D : E → E, définie par D(P ) = P ′, n’est pas continue.
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Solution :

(1) Soit N une norme sur E.

Pour a ∈ R, la fonction fa : x 7→ eax est dans E, et elle vérifie D (fa) = afa.
Supposons que D est continue pour la norme N , puisque D est linéaire, il existe C > 0 tel que

N (D (fa)) ≤ CN (fa)

On obtient, alors, pour tout a ∈ R

|a|N ((fa)) ≤ CN (fa) =⇒ |a| ≤ C

C’est bien sûr impossible, et D n’est pas continue sur (E,N).
(2) Puisque D est une apllication linéaire et E est un esapce de dimension finie, alors D est continue.
(3) Supposons que D est continue. Alors il existe C > 0 telle que

∀P ∈ E ‖D(P )‖ ≤ C‖P‖

Soit n ∈ N, pour P = Xn, on trouve D(P ) = nxn−1 et donc

n = ‖D(P )‖ ≤ C‖P‖ = C

Ceci est impossible car N n’est pas majoré. D’où D n’est pas continue.

Exercice 5

Soient E et F deux evn, dimE ≥ 1, et u une application linéaire continue de E dans F .

1. Montrer qu’il existe une suite ( xn ) d’éléments de E telle que :

∀n ∈ N, ‖xn‖ = 1 et lim
n→∞

‖u (xn)‖ = ‖u‖

2. Montrer que si dimE < +∞, alors il existe x ∈ E, ‖x‖ = 1, tel que ‖u(x)‖ = ‖u‖.

3. Soit E := C([0, 1],R) muni de la norme ‖f‖1 =
∫ 1

0
|f(t)|dt. On définit une application linéaire

V : E → E par :

∀f ∈ E,∀x ∈ [0, 1], V (f)(x) =

∫ x

0

f(t)dt

(a) Montrer que V est continue sur E.
(b) Soit (fn)n≥1 la suite d’éléments de E définie par : fn(x) = ne−nx, (n ≥ 1, 0 ≤ x ≤ 1). Calculer
‖fn‖1 et ‖V (fn)‖1, et en déduire la norme de l’application linéaire V .
(c) Montrer par l’absurde, qu’il n’existe pas de f ∈ E telle que ‖f‖1 = 1 et ‖V ‖ = ‖V (f)‖1.
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Solution :

1. On a u est une application linéaire continue, alors ‖u‖ est finie.

Soit n ∈ N, alors il existe xn ∈ E telle que : ‖xn‖E = 1 et ‖u‖ − 1
n+1

6 ‖u (xn)‖F 6 ‖u‖.
Donc, la suite ( xn ) vérifiée

[∀n ∈ N, ‖xn‖E = 1] et
[
∀n ∈ N, ‖u‖ − 1

n+ 1
6 ‖u (xn)‖F 6 ‖u‖

]
Et par passage à limite dans l’inégalité précédente on aura, limn→+∞ ‖u (xn)‖F = ‖u‖, d’où le
résultat.
2. On suppose que E est de dimension finie, d’après la question précédente, il existe une suite (xn)
d’éléments de la boule unité de E telles que :

[∀n ∈ N, ‖xn‖E = 1] et
[

lim
n→+∞

‖u (xn)‖F = ‖u‖
]

Or la dimension de E est finie, d’où la boule unité de E est un compacte de E, donc il existe une
application φ : N −→ N telle que :

(
xφ(n)

)
est convergente vers un élément x de la boule unité de E ;

i.e ‖x‖E = 1, De plus la suite ( xφ(n) ) vérifiée :

[
∀n ∈ N,

∥∥xφ(n)∥∥E = 1
]

et
[

lim
n→+∞

∥∥u (xφ(n))∥∥F = ‖u‖
]

Et par passage à la limite dans l’égalité et l’inégalité précédentes et grâce à la continuité des normes
‖.‖E, ‖.‖F et l’application u, on aura :

‖x‖E = 1 et ‖u(x)‖F = ‖u‖

3. (a) Soit f ∈ E, on a :

‖V (f)‖1 =

∫ 1

0

|V (f)(t)| · dt =

∫ 1

0

∣∣∣∣∫ t

0

f(u) · du
∣∣∣∣ · dt =⇒ ‖V (f)‖1 6

∫ 1

0

(∫ 1

0

|f(u)| · du
)
· dt

Car, ∀t ∈ [0; 1],
∣∣∣∫ t0 f(u) · du

∣∣∣ 6 ∫ t0 |f(u)|.du et
∫ t
0
|f(u)|.du 6

∫ 1

0
|f(u)|.du

Donc,

‖V (f)‖1 6
∫ 1

0

‖f‖1.dt =⇒ ‖V (f)‖1 6 ‖f‖1

Et puisque V est une application linéaire, alors elle est continue.
(b) Soient n ∈ N∗ et t ∈ [0; 1], on a :

V (fn) (t) =

∫ t

0

fn(u) · du =

∫ t

0

ne−nu · du =
[
−e−nu

]t
0

= 1− e−nt

Donc,
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– ‖fn‖1 =
∫ 1

0
|fn(t)| .dt = V (fn) (1) = 1− e−n

−‖V (fn)‖1 =
∫ 1

0
|V (fn) (t)| · dt =

∫ 1

0
1− e−nt · dt =

[
t+ 1

n
e−nt

]1
0

= 1 + 1
nen
− 1

n

D’une part, ∀n ∈ N∗, fn ∈ B (0E, 1), où B (0E, 1) est la boule unité de E. alors :{
(∀f ∈ E), ‖V (f)‖1 6 ‖f‖1
‖u‖ = sup‖f‖161 ‖V (f)‖1

=⇒ (∀f ∈ B (0E, 1)) : ‖V (f)‖1 6 ‖f‖1 6 1 =⇒ ‖u‖ 6 1

D’autre part, ‖u‖ > supn∈N∗ ‖V (fn)‖1, or supn∈N∗ ‖V (fn)‖1 = 1, d’où ‖u‖ > 1.
Car,

[
(∀n ∈ N∗) , ‖V (fn)‖1 = 1 +

1

nen
− 1

n
=⇒ ‖V (fn)‖1 6 1

]
et lim

n→+∞
‖V (fn)‖1 = 1

Ainsi, ‖u‖ = 1

(c) On suppose qu’elle existe f ∈ E telles que :
{
‖f‖1 = 1
‖V (f)‖1 = ‖V ‖ = 1

On a : ‖V (f)‖1 =
∫ 1

0

∣∣∫ x
0
f(t).dt

∣∣ .dx. Donc

‖V (f)‖1 ≤
∫ 1

0

(∫ x

0

|f(t)| · dt
)
dx

≤
∫ 1

0

(∫ 1

0

|f(t)| · dt−
∫ 1

x

|f(t)| · dt
)
· dx

≤
∫ 1

0

(
‖f‖1 −

∫ 1

x

|f(t)| · dt
)
· dx

≤
∫ 1

0

‖f‖1 · dx−
∫ 1

0

(∫ 1

x

|f(t)| · dt
)
· dx

≤ ‖f‖1 −
∫ 1

0

(∫ 1

x

|f(t)| · dt
)
· dx

Donc 0 ≤
∫ 1

0

(∫ 1

x
|f(t)|.dt

)
.dx 6 0; Car (‖V (f)‖1 = ‖f‖1 = 1) Ce qui montre que

(∀x ∈ [0; 1]),
∫ 1

x
|f(t)|.dt = 0 et

∫ 1

0
|f(t)|.dt = 0. Ainsi f = 0E . Et ceci contradictoire avec le fait

que ‖f‖1 = 1.

Ainsi, il n’existe aucun élément f de E telles que :
{
‖f‖1 = 1
‖V (f)‖1 = ‖V ‖

Exercice 6

Soient d ∈ N∗, (Ei, ‖ · ‖i)16i6n et (F, ‖ · ‖F ) des espaces vectoriels normés sur K et posons

E =
d∏
i=1

Ei

1. Montrer que si F est complet, alors ( L (E1, . . . , En : F ) , ‖.‖)estaussicomplet.
2. Montrer que si les espaces vectoriels E1, . . . , Ed sont de dimension finie, alors toute

application f : E −→ F multilinéaire est continue.
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Solution :

1. Soit ( fn ) une suite de Cauchy dans ( L (E1, . . . , En : F ) , ‖.‖), alorsona :

(∀ε > 0), (∃N ∈ N),
(
∀(n,m) ∈ N2

)
:

{
n > N
m > N

=⇒ ‖fn − fm‖ 6 ε

ou encore,

(∀ε > 0), (∃N ∈ N),
(
∀(n,m) ∈ N2

)
:

{
n > N
m > N

=⇒ (∀X ∈ E), ‖fn(X)− fm(X)‖F 6 ε. ‖x1‖1 . . . ‖xd‖d
(1.2)

Soit X = (x1, . . . , xd) un élément de E, (1.2) entraine que (fn(X)) est une suite de Cauchy dans F ,
or F est complet , alors elle est convergente dans F .
On dispose donc, d’une application f : E −→ F,X = (x1, . . . , xd) 7−→ f(x) = limn→∞ fn(X).
Donc, il suffit de prouver que f ∈ L (E1, . . . , En : F ) et la suite (fn) est convergente vers f . - f est
multilinéaire : Soient i ∈ [1; d], (xi, x

′
i) ∈ Ei, xj ∈ Ej pour j ∈ [1; d]\{i} et λ ∈ K, alors on a :

f(x1, . . . , λ.xi + x′i︸ ︷︷ ︸
ime place

, . . . , xd) = lim
n
fn (x1, . . . , λ.xi + x′i, . . . , xd)

= lim
n
λ.fn (x1, . . . , xi, . . . , xd) + fn (x1, . . . , x

′
i, . . . , xd)

= λ. lim
n
fn (x1, . . . , xi, . . . , xd) + lim

n
fn (x1, . . . , x

′
i, . . . , xd)

= λ.f (x1, . . . , xi, . . . , xd) + f (x1, . . . , x
′
i, . . . , xd)

– f est continue : En faisant tendre m vers l’infini dans (1.2), on trouve :

(∀ε > 0), (∃N ∈ N), (∀n ∈ N) : n > N =⇒ (∀X ∈ E), ‖fn(X)− f(X)‖F 6 ε · ‖x1‖1 . . . ‖xd‖d
(1.3)

D’une part, il existe p ∈ N, telle que :

(∀n ∈ N), n > p =⇒ (∀X ∈ E), ‖fn(X)− f(X)‖F 6 ‖x1‖1 . . . ‖xd‖d

D’autre part, l’application fp est continue, alors :

(∃M > 0), (∀X ∈ E), ‖fp(X)‖F 6M. ‖x1‖1 . . . ‖xd‖d

Or Pour tout X ∈ E, on a :

‖f(X)‖F 6 ‖f(X)− fp(X)‖F + ‖fp(X)‖F
6 ‖x1‖1 . . . ‖xd‖d +M. ‖x1‖1 . . . ‖xd‖d
6 (1 +M). ‖x1‖1 . . . ‖xd‖d

Donc f est continue.
− (fn) −→ f : Il découlent de (1.3).
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Conclusion : (L (E1, . . . , En : F ) , ‖‖.) est complet.
2. On suppose que E1, . . . , Ed sont de dimension finie et soit f : E −→ F une application
multilinéaire.
Pour tout i ∈ [1; d], soient :

– mi = dim (Ei).
– β(i) =

(
e
(i)
1 , e

(i)
2 , . . . , e

(i)
mi

)
une base de Ei.

Soit X = (x1, . . . , xd) un élément de E, alors on a :

(∀i ∈ [1; d]),
(
∃
(
λ
(i)
1 , . . . , λ

(i)
mi

)
∈ Kmi

)
: xi =

mi∑
ji=1

λ
(i)
ji
e
(i)
ji

Alors,

f(X) = f

(
m1∑
j1=1

λ
(1)
j1
· e(1)j1 ,

m2∑
j2=1

λ
(2)
j2
· e(2)j2 , . . . ,

md∑
jd=1

λ
(d)
jd
· e(d)jd

)

=

m1∑
j1=1

λ
(1)
j1
f

(
e
(1)
j1
,

m2∑
j2=1

λ
(2)
j2
· e(2)j2 , . . . ,

md∑
jd=1

λ
(d)
jd
· e(d)jd

)

=

m1∑
j1=1

λ
(1)
j1

m2∑
j2=1

λ
(2)
j2
f

(
e
(1)
j1
, e

(2)
j2
, . . . ,

md∑
jd=1

λ
(d)
jd
· e(d)jd

)
...

=

m1∑
j1=1

m2∑
j2=1

. . .

md∑
jd=1

λ
(1)
j1
· λ(2)j2 . . . λ

(d)
jd
f
(
e
(1)
j1
, e

(2)
j2
, . . . , e

(d)
jd

)

Posons, M = max
{∥∥∥f (e(1)j1 , e(2)j2 , . . . , e(d)jd )∥∥∥F , i ∈ [1; d] et ji ∈ [1;mi]}, alors on a :

‖f(X)‖F 6

∥∥∥∥∥
m1∑
j1=1

m2∑
j2=1

. . .

md∑
jd=1

λ
(1)
j1
· λ(2)j2 . . . λ

(d)
jd
f
(
e
(1)
j1
, e

(2)
j2
, . . . , e

(d)
jd

)∥∥∥∥∥
F

6
m1∑
j1=1

m2∑
j2=1

. . .

md∑
jd=1

∣∣∣λ(1)j1 ∣∣∣ · ∣∣∣λ(2)j2 ∣∣∣ . . . ∣∣∣λ(d)jd ∣∣∣ · ∥∥∥f (e(1)j1 , e(2)j2 , . . . , e(d)jd )∥∥∥F
6M ·

m1∑
j1=1

m2∑
j2=1

. . .

md∑
jd=1

∣∣∣λ(1)j1 ∣∣∣ · ∣∣∣λ(2)j2 ∣∣∣ . . . ∣∣∣λ(d)jd ∣∣∣
6M ·

m1∑
j1=1

m2∑
j2=1

∣∣∣λ(1)j1 ∣∣∣ · ∣∣∣λ(2)j2 ∣∣∣ . . . md∑
jd=1

∣∣∣λ(d)jd ∣∣∣︸ ︷︷ ︸
=‖xd‖

(1)
Ed

...

6M · ‖x1‖(1)E1
. . . ‖xd‖(1)Ed

Et puisque pour tout i ∈ [1, d], Ei est de dimension finie, alors toute les normes sur Ei sont
équivalentes. Donc,
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(∀i ∈ [1, d]), (∃αi > 0) , (∀y ∈ Ei) : ‖y‖(1)Ei
6 αi.‖y‖i

Par suite,

‖f(X)‖F 6M.α1 . . . αd. ‖x1‖1 . . . ‖xd‖d
6 α. ‖x1‖1 . . . ‖xd‖d

Avec α = (M + 1).α1 . . . αd(> 0).
Ainsi f est continue.



Chapitre 2
Applications Différentielles

Exercice 1

Étudier la différentiabilité de f : E → F et calculer sa différentielle éventuelle, dans chacun des cas
suivants :

1. f1(X) = X3;E = F =Mn(K).

2. f (2X) = tr (X3)X;E = F =Mn(K).

3. f3(P ) = P ′ − P 3;E = Rn[X], F = R3n[X].

4. f4(x) = 〈Ax, x〉+ 〈x, b〉+ α ; E espace préhilbertien réel, F = R, (A ∈ L(E), b ∈ E,α ∈ R ).

5. f5(x) = ‖x‖;E espace préhilbertien réel, F = R

Solution :

1. Soit X ∈ E et H ∈ E ona

f1(A+H)− f(A) = (A+H)3 − A3 = A2H + AHA+HA2 +HAH +H2A+H3.

On considère l’applcation φ : E 7→ E telle que φ(H) = A2H + AHA+HA2 +HAH .
L’application φ est linéiare : évident.
Donc φ ∈ L(E) puisque E est de dimension finie.
D’autre part,

f1(A+H)− f1(A)− φ(H) = HAH +H2A+H3 = H
(
AH +HA+H2

)
= o(‖H‖).

Donc f1 est différentiable en tout A ∈ E et sa différentielle est Df1 : E 7→ L(E) telle que

Df1(A)(h) = A2H + AHA+HA2 +HAH

pour tout A ∈ E et H ∈ E.

15
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Remarque :

Si f(X) = Xp (p ∈ N∗), f est différentiable et sa différentielle est donnée par la formule suivante :

f ′(X) ·H =

p−1∑
k=0

Xk ·H ·Xp−k−1.

2. f2(X) = tr (X3)X;E = F =Mn(K).

On sait que l’application X 7→ tr(X) est linéaire cntinue, donc elle est différentiable sur E.

Ceci implique que l’application
g : E 7→ E

X 7→ tr (X3) .
est différentiable ; comme composée de deux

applications différentiables f1 et tr et on a pour tout X ∈ E et H ∈ E

Dg(X)(H) = Dtr (f1(X))Df1(X)(H) = Dtr(X)
(
A2H + AHA+HA2 +HAH

)
= tr

(
A2H + AHA+HA2 +HAH

)
= 3 tr

(
A2H

)
D’une part, on considère les applications

φ1 : E 7→ K××E
X 7→ (g(X), X).

et
φ2 : K××E 7→ E

(λ,X) 7→ λX.
L’application φ1 est différentiable car ses composantes sont différentiables et on pour tout X ∈ E et
H ∈ E

Dφ1(X)(H) = (Dg(X)(H), H) =
(
3 tr

(
A2H

)
, H
)

L’application φ2 est différentiable ( carφ1 est bilinéaire continue). ET on a

Dφ2(λ,X)(µ, Y ) = φ2(λ, Y ) + φ2(µ,X) = λU + µX

Et par suite f2 = φ2 ◦ φ1 est différentiable (comme composée de deux applications différentiables) et
sa différentielle est donnée par

Df2(X)(H) = Dφ2 (φ1(X))Dφ1(X)(H)

= Dφ2

(
tr
(
X3
)
, X
) (

3 tr
(
A2H

)
, H
)

= tr
(
X3
)
H + 3 tr

(
A2H

)
X

pour tout X ∈ E et H ∈ E.
3. Soit h un polynôme de degré ≤ n. f est différentiable et on a :

f(P + h)− f(P ) = (P + h)′ − (P + h)3 − P ′ + P 3

= h′ − 3P 2h− 3Ph2 + h3

Or h3 − 3Ph2 = o(‖h‖). On a donc

f ′(P ).h = h′ − 3P 2h
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4. On a

f(x+ h)− f(x) = 〈A(x+ h), x+ h〉+ 〈x+ h, b〉+ α− 〈Ax, x〉 − 〈x, b〉 − α
= 〈Ax, x〉+ 〈Ax, h〉+ 〈Ah, x〉+ 〈Ah, h〉+ 〈x, b〉+ 〈h, b〉+ α− 〈Ax, x〉 − 〈x, b〉 − α
= 〈Ax, h〉+ 〈Ah, x〉+ 〈h, b〉+ 〈Ah, h〉

et comme h 7→ 〈Ax, h〉+ 〈Ah, x〉+ 〈h, b〉 est linéaire et 〈Ah, h〉 = o(‖h‖), donc f est différentiable
et sa différentielle est f ′(x).h = 〈Ax, h〉+ 〈Ah, x〉+ 〈h, b〉.
5. Soit h ∈ E. On sait que la norme est définie via le produit scalaire, c’est-à-dire ‖x‖2 = 〈x, x〉.
Posons

g(x) = 〈x, x〉

Alors,

g(x+ h)− g(x) = 〈x+ h, x+ h〉 − 〈x, x〉
= 〈x, x〉+ 〈x, h〉+ 〈h, x〉+ 〈h, h〉 − 〈x, x〉
= 2〈x, h〉+ ‖h‖2

Ainsi, g′(x).h = 2〈x, h〉. Comme u 7→
√
u est une application dérivable de R∗+ dans R∗+, la restriction

de f à E\{0} est différentiable et sa différentielle est :

f ′(x) · h =
2〈x, h〉

2
√
〈x, x〉2

=
〈x, h〉
〈x, x〉

Exercice 2

1. Soit B ∈ L (E1, E2;F ) une application bilinéaire continue sur E = E1 × E2 où E1, E2 et F
des ecpaces de vectoriels normés sur K.
Montrer que B est différentiable en tout point ( x1, x2 ) de E1 × E2 et donner sa différentielle
DB (x1, x2).

2. Soit G un espace de Banach. On considère f : Ω 7→ E1 et g : Ω 7→ E2 deux applications de
classe Cn sur Ω (où Ω un ouvert de G ). Posons

φ :Ω 7→ F

x 7→ φ(x) = B(f(x), g(x))

(a) Montrer que l’application φ est de classe Cn.
(b) Déterminer Dφ(x)(h) pour tout x ∈ Ω et h ∈ G.
3. Soient φ ∈ L (E1, . . . , En;F ) une application multilinéaire continue sur E = E1 × . . .× En où
E1, . . . , En et F des ecpaces de vectoriels normés sur K.
Montrer que φ est différentiable en tout point et que sa différentielle est donnée par

Dφ (x1, . . . , xn) · (h1, . . . , hn) =
n∑
i=1

φ (x1, . . . , xi−1, hi, xi+1, . . . , xn) .
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Solution :

1. B est différentiable. Pour X = (x1, x2) ∈ E1 × E2 et H = (h1, h2) ∈ E1 × E2 on a

B(X +H)−B(X) = B (x1 + h1, x2 + h2)−B (x1, x2) = B (x1, h2) +B (h1, x2) +B (h1, h2)

Il est clair que L’application L : E1 × E2 7→ F définie par L (h1, h2) = B (x1, h2) +B (h1, x2) est
linéaire.
Pour H = (h1, h2) ∈ E1 × E2 On considère la norme ‖(h1, h2)‖E = max

(
‖h1‖E1

, ‖h2‖E2

)
. Donc

‖hi‖Ei
≤ ‖(h1, h2)‖E pour tout i = 1, 2.

Puisque B est bilinéaire continue, alors il existe C > 0 tel que

‖B (h1, h2)‖F ≤ C ‖h1‖E1
‖h2‖E2

Donc
‖L (h1, h2)‖ ≤ C ‖x1‖E1

‖h2‖E2
+ C ‖h1‖E1

‖x2‖E2
≤ C

(
‖x1‖E1

+ ‖x2‖E2

)
‖(h1, h2)‖E .

Ceci montre que L est continue.
D’autre part,

B (h1, h2) ≤ C ‖h1‖E1
‖h2‖E2

≤ C ‖(h1, h2)‖2E

Donc 1
‖(h1,h2)‖E

‖B(X +H)−B(X)− L(H)‖ tend vesr 0 lorsque (h1, h2) tend vers (0, 0). Par suite
l’application B est différentiable sur E1 × E2 et sa différentielle est donnée par

DB : E1 × E2 7→ L (E1 × E2, F )
(x1, x2) 7→ DB (x1, x2) .

avec DB (x1, x2) (h1, h2) = B (x1, h2) +B (h1, x2) pour tout (h1, h2) ∈ E1 × E2.
Remarque : On peut montrer que l’application DB est linéaire continue, ceci prouve que DB est
différentiable et même de classe C∞.
2. L’application

ψ :Ω 7→ E1 × E2

x 7→ (f(x), g(x)).

est de classe Cn car ses composantes f et g sont de classe Cn.
Donc φ = B ◦ ψ est de classe Cn. De plus, pour tout x ∈ Ω et h ∈ G on a

Dφ(x)(h) = DB(ψ(x))Dψ(x)(h)

= DB(f(x), g(x))(Df(x)(h), Dg(x)(h))

= B(f(x), Dg(x)h) +B(Df(x)(h), g(x))

3. Soient E =
∏
Ei, a = (a1, a2, . . . , ap) ∈ E et B : E → F une application p-linéaire continue.

On définit l’application partielle Bi : Ei → F par :
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Bi (xi) = B (a1, . . . , ai−1, xi, ai+1, . . . , ap)

Comme B est linéaire continue, alors Bi est continue. En effet,

‖Bi (xi)‖F = ‖B (a1, . . . , ai−1, xi, ai+1, . . . , ap)‖

≤ k
∏
j 6=i

‖aj‖ ‖xi‖

≤ k′ ‖xi‖ .

De plus, B est différentiable pour p = 2 on écrit B (a1 + h, a2 + k)−B (a1, a2) =
(B (a1, a2) + B (a1, k) +B (h, a2) +B(h, k))−B (a1, a2) = B (a1, k) +B (h, a2) +B(h, k). Et on
prend ε(h, k) = B(h,k)

‖(h,k)‖ , on obtient donc B′ (a1, a2) · (h, k) = B (a1, k) +B (h, a2).
Le cas p ≥ 3 se traite de la même façon. (car elle est p-linéaire est continue) et sa différentielle au
point a = (a1, . . . , ap) est :

B′(a) · (h1, h2, . . . , hp) = B (h1, a2, . . . , ap) +B (a1, h2, a3, . . . , ap) +B (a1, a2, . . . , hp)

ainsi pour tout i ∈ {1, 2, . . . , p} on a :

∂B

∂xi
(a) · hi = B (a1, . . . , ai−1, hi, ai+1, . . . , ap)

Il suffit donc de montrer que ∂B
∂xi

(a) est continue au point a.

∥∥∥∥∂B∂xi (a) · hi
∥∥∥∥ = ‖B (a1, . . . , ai−1, hi, ai+1, . . . , ap)‖

≤ ‖B‖ · ‖hi‖
∏
j 6=i

‖aj‖

≤ k ‖hi‖

Donc, ∂B
∂xi

(a) est continue sur Ei pour tout i. Par ailleurs, a étant arbitraire dans E, alors les dérivées
partielles sont continues sur E, d’où B est de classe C1.

Exercice 3

Soit ( E,< . > ) un espace préhilbertien réel. On considère la norme définie sur E par ‖x‖ =
√
〈x.x〉

pour tout x ∈ E.

1. Soit u ∈ L(E). On considère l’application f : E → R, définie par

f(x) =< x, u(x) >

Montrer que f est différentiable et donner sa différentielle.
2. Étudier la diférentiablité de ψ : E 3 x 7→ 〈x, u(x)〉x ∈ E.
3. Soit f : R→ E une application différentiable qui ne s’annule pas.

Montrer que la fonction F : R→ R, définie par F (t) = ‖f(t)‖, est dérivable et donnée sa dérivée.



20 CHAPITRE 2. APPLICATIONS DIFFÉRENTIELLES

Solution :

(1) Montrons que f est différentiable.

On considère les applications
φ1 : E 7→ E × E

x 7→ φ2 → (x) = (x, u(x))
et φ2 : E × E 7→ R

x 7→ φ1(x) = (x, u(x)). et (x, y) 7→ φ2(x, y) =< x, y > .

L’application φ1 est différentiable sur E car ses composantes x 7→ x et x 7→ u(x) sont
différentiables ;.
Et on a

Dφ1(x)(h) = (h, u(h)) pour tout x ∈ E et h ∈ E.

L’application φ2 est bilinéaire continue d’après l’inégalita de Cauchy Schxartz donc elle est
différentiable sur E × E et on a

Dφ(x, y
)

(h, k) =< x, k > + < h, y > pour tout (x, y) ∈ E2 et (h, k) ∈ E × E.

Puisque f = φ2 ◦ φ1, alors elle est différentiable sur E et on pour tout x ∈ E et h ∈ E

Df(x)(h) = Dφ2 (φ1(x)) ◦Dφ1(x)(h) = Dφ2(x, u(x))(h, u(h)) =< x, u(h) > + < h, u(h) > .

(2) La différentiabilité de ψ.

On considère les applications g1 : K× E 7→ E et g2 : E 7→ K× E

(λ, x) 7→ λx. el x 7→ (f(x), x).

Il est clair que g1 est bilinéaire continnue donc elle est différentiable et sa différentielle est donnée par

Dg1(λ, x)(α, y) = g1(λ, x) + g1(α, y) = λx+ αy.

D’autre part l’application g2 est différeltaible car ses composante, x 7→ f(x) et x 7→ x, sont
différentaibles et on a pour tout x ∈ E et h ∈ E

Dg2(x)(h) = (Df(x)(h), h) = (< x, u(h) > + < h, u(h) >, h).

Puisque ψ = g1 ◦ g2, alors ψ est différentiable sur E et sa différentielle est donnée pour tout x ∈ E et
h ∈ E par

Dψ(x)(h) = Dg1 (g2(x)) ◦Dg2(x)(h)

= Dg1(f(x), x)(< x, u(h) > + < h, u(h) >, h)

= f(x)h+ (< x, u(h) > + < h, u(h) >)x
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(3) Remarquons que ∀x ∈ RF (x) = ‖f(x)‖ =
√
< f(x), f(x) >. Donc on peut décomposer F de la

façon suivante F = ψ1 ◦ ψ2 où

ψ1 : R 7→ R
x 7→< f(x), f(x) > et ψ2 :

t 7→ R
t 7→
√
t.

ψ1 est différentiable sur R car c’est la composée de deux applications différentiables :
ψ = `2 ◦ `1`1 : x 7→ (f(x), f(x)) différentiable car ses composantes le sont et
D`1(x)(h) = (hf ′(x), hf ′(x)), `2 : (u, v) 7→< u, v > différentiable car bilinéaire continue et
D`2(u, v)(u; k) =< u, h > + < h, v > Et on a pour tout x ∈ R et h ∈ R

Dψ1(x)(h) = D`2 (`1(x)) ◦D`1(x)(h)

=< f(x), hf ′(x) >=< hf ′(x), f(x) >

= 2 < f(x), hf ′(x) >

D’autre part l’application ψ2 est différentiable sur ]0,+∞ [ et Dψ2(x)(h) = h
2
√
x

pour tout
x ∈ 0,+∞ [ et h ∈ R. Puisque f ne s’annule pas, alors ψ1(R) ⊂] 0,+∞ [ . Donc F = ψ2 ◦ ψ1 est
différentiable sur R et pour tout x ∈ R et h ∈ R on a

DF (x)(h) = Dψ2 (ψ1(x)) ◦Dψ1(x)(h)

= Dψ2(< f(x), f(x) >)2 < f(x), hf ′(x) >

=
2 < f(x), hf ′(x) >

2
√
< f(x), f(x) >

=
< f(x), hf ′(x) >

‖f(x)‖
.

Exercice 4

Soient E = C([0, 1],R) muni de la norme ‖.‖∞ et g : R→ R une application de classe C1 fixée.
Étudier la différentiabilité de l’application Φ : E → E définie par :

∀f ∈ E,∀t ∈ [0, 1], Φ(f)(t) =

∫ t

0

g(f(x))dx

Coerrection :

Soit f ∈ E et u ∈ E. Pour tout t ∈ [0, 1] on a

(Φ(f + u)− Φ(f))(t) =

∫ t

0

g(f + u)(x)− g(f)(x)dx =

∫ t

0

g(f(x) + u(x))(x)− g(f(x))dx

D’après T.A.F, appliqué à la fonction g entre f(x) + u(x) et f(x), il existe θ(x) ∈ [0, 1] tel que

g(f(x) + u(x))(x)− g(f(x)) = u(x)g′(f(x) + θ(x)u(x))
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Donc

(Φ(f + u)− Φ(f))(t) =

∫ t

0

g′(f(x) + θ(x)u(x))u(x)dx

On considère l’application
ψf : E 7→ E

u 7→ ψf (u)
tel que ψf (u)(t) =

∫ t
0
g′(f(x))u(x)dx. Il est clair

que ψf est linéaire (provient de la linéarité de l’intégrale).
ψf est continue. En effet pour tout u ∈ E on a

‖ψf (u) = sup
t∈[0,1]

|ψf (u)(t)|

= sup
t∈[0,1]

∣∣∣∣∫ t

0

g′(f(x))u(x)dx

∣∣∣∣
≤
∫ t

0

|g′(f(x))u(x)| dx

≤ ‖g′ ◦ f‖ · ‖u‖

Ceci montre qui ψf est continue.
Rappelons qu’il s’agit de montrer que

∀ε > 0 ∃η > 0‖u‖ < η =⇒ ‖φ(f + u)− φ(f)ψf (u)‖ < ε‖u‖.

On peut imposer à u la condition ‖u‖ < 1 ; ainsi, lorsque x ∈ [0, 1], f(x) + θ(x)u(x) et f(x)
appartiennent à l’intervalle [−‖f‖ − 1, ‖f‖+ 1].
Puisque g est de classe c1, alors g′ est uniformement continue sur l’intervalle [ −‖f‖ − 1, ‖f‖+ 1 ]
qui est compact.
( c’est-à-dire ∀ε > 0∃α > 0 tel que ‖x− y‖ < α =⇒ ‖g′(x)− g′(y)‖ < ε.)
Donc ∀ε > 0∃α > 0 tel que pour tout ‖u‖ < α on ait
∀x ∈ [0, 1]|f(x) + θ(x)u(x)− f(x)| = |θ(x)u(x)| < ‖u‖ < α =⇒
|g′(f(x) + θ(x)u(x))− g′(f(x))| < ε.
Ainsi

|(φ(f + u)− φ(u)− ψf (u)ψf (u)) (t)| ≤
∫ t

0

|g′(f(x) + θ(x)u(x))− g′(f(x))| |u(x)|dx

≤ ε‖u‖

Par conséquent

‖φ(f + u)− φ(u)− ψf (u)‖ < ε‖u‖.

Ceci montre que φ est différentiable et sa différentielle est donnée par

Dφ(f)(u)(t) =

∫ t

0

g′(f(x)u(x)dx
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Exercice 5

Soit E un espace de Banach. On fixe un isomorphisme u de E sur lui même ( u ∈ I som (E) ) et on
considère l’application f : L(E)→ L(E) définie par f(v) = 2v − v ◦ u ◦ v.

1. Montrer que f est de classe C1 et calculer sa différentielle. Que valent f (u−1) et Df (u−1) ?

2. Montrer qu’il existe α > 0 tel que, pour tout u ∈ L(E),

∥∥v − u−1∥∥ ≤ α =⇒ ‖Df(v)‖ ≤ 1

2

3. On fixe v0 ∈ L(E) tel que ‖v0 − u−1‖ ≤ α, et l’on définit par récurrence la suite vp+1 = f (vp)
pour tout p ∈ N.
Montrer que, pour tout p ∈ N, ‖vp − u−1‖ ≤ α.
En déduire que la suite (vp)p converge vers u−1 dans L(E).

Solution :

(1) L’application f est de classe C1

On considère les applications suivante

φ1 : L(E)× L(E) 7→ L(E) et φ2 :
(x, y) 7→ x ◦ u ◦ y.

L(E) 7→ L(E)× L(E).

x 7→ (x, x).

φ1 est de classe C1 : ses composantes le sont.
φ2 est de classe C1 car c’est une application bilinéaire continue, et pour tout (x, y) ∈ L(E)×L(E) et
(h, k) ∈ L(E)× L(E),

Dφ2(x, y)(h, k) = φ2(x, k) + φ2(h, y) = x ◦ u ◦ k + h ◦ u ◦ y.

Donc l’application composée φ = φ1 ◦ φ2 est de classe C1 et sa différentielle est donnée par

Dφ(x)(h) = Dφ1 (φ2(x)) ◦Dφ2(x)(h) = Dφ1(x, x)(h, h) = x ◦ u ◦ h+ h ◦ u ◦ x.

Par conséquent f est de classe C1 comme différence de deux apllications de classe C1 : 2IdL(E) :
x 7→ x et l’application φ. Pour tout v ∈ L(E) et h ∈ L(E)

Df(v)(h) = 2h− v ◦ u ◦ h− h ◦ u ◦ v.

Par définition f (u−1) = u−1 et d’après la formule précédente Df (u−1) = 0.
(2) Puisque Df (u−1) = 0 et Df est continue, alors il existe une boule fermé B de centre u−1 telle
que

‖Df(v)‖ ≤ 1

2
pour tout v ∈ B
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C’est-à-dire il existe α > 0 ; pour tout v ∈ L(E)

∥∥v − u−1∥∥ ≤ α =⇒ ‖Df(v)‖ ≤ 1

2
.

(3) On pose B = B (u−1, α) la boule de centre u−1 et rayon α. Puisque f est différentiable sur B et
∀v ∈ B =⇒ ‖Df(v)‖ ≤ 1

2
, le T.A.F implique que

∀x, y ∈ B
(
u−1, α

)
‖f(x)− f(y)‖ ≤ 1

2
‖x− y‖.

En particulier

∀v ∈ B
(
u−1, α

) ∥∥f(v)− u−1
∥∥ ≤ 1

2

∥∥v − u−1∥∥ .
D’autr part,

∥∥v0 − u−1∥∥ < α =⇒
∥∥v1 − u−1∥∥ ≤ 1

2

∥∥v0 − u−1∥∥ < α

Donc, par récurrence ∀p ∈ N ‖vp − u−1‖ < α c’est-à-dire vp ∈ B (u−1, α).
En utilisant (*), on montre par récurrence que

∀p ∈ N
∥∥vp − u−1∥∥ ≤ 1

2p
∥∥v0 − u−1∥∥ .

Ceci montre que limp 7→∞ vp = u−1.

Exercice 6

Soient E un evn, U un ouvert convexe de E,α > 1 et f : U → E une application qui satisfait :

∀x, y ∈ U, ‖f(x)− f(y)‖ ≤ ‖x− y‖α.

Montrer que f est constante.

Solution :

De l’inégaité on obtient :

‖f(a+ h)− f(a)‖ ≤ ‖h‖α

donc ‖f(a+h)−f(a)‖‖h‖ ≤ ‖h‖α−1 −→ 0 quand ‖h‖ → 0. Alors,

f(a+ h) = f(a) + o(‖h‖)

f est différentiable et de différentielle nulle. Comme U est convexe, alors f est constante.
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Exercice 7

Soient X et Y deux R-espaces de Banach. On considère les espaces E = L(X, Y ), F = L(Y,X) et
Ω = I som(X, Y ) l’ensemble des isomorphismes de X sur Y . (On rappelle que Ω est un ouvert de
E.)
On considère l’application f : Ω→ F = L(Y,X) définie par f(u) = u−1.

1. On considère l’application ψ : E × F → L(X,X) définie par ψ(u, v) = v ◦ u. Montrer que ψ
est une application bilinéaire continue.

2. Supposons que f est différentiable sur Ω.
(a) Montrer que pour tout u ∈ Ω et h ∈ E : ψ(h, f(u)) + ψ(u,Df(u).h) = 0.
(b) En déduire que Df ((u) · h = −u−1 ◦ h ◦ u−1 pour tout u ∈ Ω et u ∈ E.

3. Montrer que l’application f est différentiable sur Ω et donner sa différentielle.

Solution :

1. ψ est bilinéaire continue : évident.

2. Supposons que f est différentiable sur Ω.
(a) Montrer que pour tout u ∈ Ω et h ∈ E : ψ(h, f(u)) + ψ(u,Df(u).h) = 0.

On considère l’application φ : Ω 7→ L(X,X) définie par φ(u) = ψ(u, f(u)).
Remarquons que φ(u) = u−1 ◦ u = Id pour tout u ∈ Ω. Donc φ est dfférentiable sur Ω et sa
différentielle est l’application nulle Dφ(u)(h) = 0 pour tout u ∈ Ω et h ∈ E.
D’autre part φ = ψ ◦ g où g : Ω 7→ E × F telle que g(u) = (u, f(u)). Les applications ψ et g sont
différentiables ( g est différentaible ; car ses composantes sont différentiables et
Dg(u)(h) = (h,Df(u)(h)) pour tout u ∈ Ω et h ∈ E).
En calculons la différentielle de φ on obtient pour tout u ∈ Ω et h ∈ E :

Dφ(u)(h) = Dψ(g(u)) ◦Dg(u)(h)

= Dψ(u, f(u))(h,Df(u)(h))

= ψ(h, f(u)) + ψ(u,Df(u).h).

D’où ψ(h, f(u)) + ψ(u,Df(u).h) = 0.
(b) Soit u ∈ Ω et h ∈ E.

D’après (a), On a ψ(h, f(u)) + ψ(u,Df(u).h) = 0 c’est-à-dire Df(u).h ◦ u = −f(u) ◦ h. Ceci
implique que Df(u)(h) = −u−1 ◦ h ◦ u−1.
3. Connaissant le "candidat" pour la différentielle de f , à savoir que

Df(u)(h) = −u−1 ◦ h ◦ u−1,

il reste à vérifier que c’est effectivement la différentielle de f en revenant à la définition. Voir le cours
pour le reste de la démonstration.
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Exercice 8

Soeint E un espace de Banach, Isom(E) le groupe des automorphismes de E (i.e. les
endomorphismes bijectifs de E qui sont bicontinues) et

U = {u ∈ L(E) : idE + u ∈ I som(E)}

1. Montrer que U est un ouvert de L(E).
2. Soit k : U → E l’application définie par k(u) = (idE + u)−1 ◦ (idE − u). Montrer que k est

différentiable et donner sa différentielle.

Solution :

1. Dans le cours il est établi que Isom(E) est un ouvert de L(E). On considère l’application
f : L(E) 7→ L(E) définie par f(u) = IdE + u.
L’application f est continue car ‖f(u)− f(v)‖ = ‖u− v‖ pour tout u, v ∈ L(E).
Puisque f−1(Isom(E)) = U , alors U est un ouvert de L(E).

2. Posons B : L(E)× L(E)→ L(E) définie par B(u, v) = u ◦ v.

Il est clair que B est bilinéaire continue, alors elle est différentiable. De plus, les application f et g
définie par

f(u) = idE + u, et g(u) = idE − u

sont différentiables puisqu’elles sont deux applications affines dans L(E), et pour tout u, h ∈ L(E)
ona

Df(u)(h) = h et Dg(u)(h) = −h.

On sait que l’application inverse φ : u 7→ u−1 est différentiable (voir Exercice 2.0.7) et que

Dφ(u)(h) = −u−1 ◦ h ◦ u−1

Ainsi l’application ψ = φ ◦ f
(
ψ(u) = (idE + u)−1

)
est différentiable et que

Dψ(u)(h) = Dψ(f(u)) ◦Df(u)(h) = Dψ (idE + u) (h) = − (idE + u)−1 ◦ h ◦ (idE + u)−1

pour tout u ∈ U et h ∈ L(E).
Par ailleurs, on a k(u) = B((ψ(u), g(u)) pour tout u ∈ U . D’où k est différentiable est on a pour tout
u ∈ U et h ∈ L(E) :

Dk(u)(h) = B(Dψ(u)(h), g(u)) +B(ψ(u), Dg(u)(h))

= B
(
− (idE + u)−1 ◦ h ◦ (idE + u)−1 , g(u)

)
+B

(
(idE + u)−1 ,−h

)
= − (idE + u)−1 ◦ h ◦ (idE + u)−1 ◦ (idE − u) + (idE + u)−1 ◦ (−h)

= − (idE + u)−1 ◦ h ◦ (idE + u)−1 ◦ (idE − u)− (idE + u)−1 ◦ h.
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(Voir Exercie 2.0.2 pour la formule de DB ).

Exercice 9

On munit Rn de la norme euclidienne ‖ · ‖2 et on note B = {e1, . . . en} sa base canonique. On
considère une fonction f : Rn 7→ R définie et continue sur la boule unité fermé Bf (0, 1) et telle
qu’elle est de classe C2 sur la boule ouverte B(0, 1). On note S = {x ∈ Rn : ‖x‖2 = 1} la sphère
unité de Rn.

1. Justifier le fait que f admet sur Bf (0, 1) un maximum et un minimum.

2. Supposons que f est constante sur la sphère S. Montrer que ∃x0 ∈ Bf (0, 1) tel que
Df (x0) = 0.

3. On note ∆(f) =
∑n

i=0
∂2f
∂x2i

le Laplacian de f .

On suppose dans cette question que ∀x ∈ B(0, 1)∆f(x) > 0 et ∃x0 ∈ B(0, 1) tel que
∀x ∈ Bf (0, 1) : f(x) ≤ f (x0).
(a) Soit i ∈ {1, . . . , n} et gi : R 7→ R définie par gi(t) = f (x0 + tei).

Justifier le fait que gi est bien définie dans un voisinage U de t = 0.
Montrer que gi est deux dérivable sur U et que g′′i(0) ≤ 0.
(b) Montrer que ∆f (x0) ≤ 0.
(c) En déduire que si ∆f > 0 sur B(0, 1) alors f atteint son maximumsur Bf (0, 1) en un point de la
sphère S.
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Chapitre 3
Différentielles d’ordre supérieur-Formules de
Taylor

Exercice 1

Approximations d’intégrales.
Soit f : [a, b]→ F de classe C2 avec F un espace de Banach et a < b.

1. Méthode des Trapèzes : montrer qu’il existe C > 0 tel que

∥∥∥∥∫ b

a

f(x)dx− (b− a)
f(a) + f(b)

2

∥∥∥∥ ≤ C · max
ξ∈[a,b]

‖f ′′(ξ)‖ (b− a)3.

2. Méthode du point milieu : montrer que

∥∥∥∥∫ b

a

f(x)dx− (b− a)f

(
a+ b

2

)∥∥∥∥ ≤ 1

24
· max
ξ∈[a,b]

‖f ′′(ξ)‖ (b− a)3.

Solution :

1. Méthode des Trapèzes : montrer qu’il existe C > 0 tel que

∥∥∥∥∫ b

a

f(x)dx− (b− a)
f(a) + f(b)

2

∥∥∥∥ ≤ C · max
ξ∈[a,b]

‖f ′′(ξ)‖ (b− a)3.

On parle de méthode de Trapèze car elle approche l’intégrale de la fonction f par celle de la fonction
P définie par

P (x) = f(a) +
f(b)− f(a)

b− a
(x− a).

Par un calcul simple on atrouve

29
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∫ b

a

P (x)dx = (b− a)
f(a) + f(b)

2
.

Donc

∫ b

a

f(x)dx− (b− a)
f(a) + f(b)

2
=

∫ b

a

f(x)− P (x)dx.

On note c = a+b
2

(le centre de l’intervalle [a, b] ), et on applique la formule de Taylor avec reste
intégrale à la fonction f − P , on obtient

f(x)− P (x) = f(c)− P (c) +D(f − P )(c)(x− c) +

∫ 1

0

(1− t)D2(f − P )(c+ t(x− c))(x− c)2dt

= f(c)− P (c) + (f ′(c)− P ′(c)) (x− c) +

∫ 1

0

(1− t)f ′′(c+ t(x− c))(x− c)2dt

= f(c)− P (c) + (f ′(c)− P ′(c)) (x− c) + r(x), (1) (1)

avec r(x) =
∫ 1

0
(1− t)f ′′(c+ t(x− c))(x− c)2dt.

x = a =⇒ 0 = f(a)− P (a) + (f ′(c)− P ′(c)) (a− c) + r(a) (2)

x = b =⇒ 0 = f(b)− P (b) + (f ′(c)− P ′(c)) (b− c) + r(b) (3)

Remarquons que c = a+b
2

, alors a− c+ b− c = 0.
(2) + (3) donne 0 = (f(c)− P (c)) + r(a) + r(b). donc

f(c)− P (c) = −r(a) + r(b)

2
.

Maintenant, l’équation (1) implique

f(x)− P (x) = −r(a) + r(b)

2
+ (f ′(c)− P ′(c)) (x− c) + r(x).

D’où

∫ b

a

f(x)− P (x)dx =

∫ b

a

r(x)dx− r(a) + r(b)

2
(b− a) +

∫ b

a

(f ′(c)− P ′(c)) (x− c)dx.

Comme
∫ b
a

(f ′(c)− P ′(c)) (x− c)dx = 0, alors

∫ b

a

f(x)− P (x)dx =

∫ b

a

r(x)dx− r(a) + r(b)

2
(b− a).

D’autr part, f est de classe C2, si on note M = maxt∈[a,b] ‖f ′′‖ on obtient
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‖r(x)‖ =

∥∥∥∥∫ 1

0

(1− t)f ′′(c+ t(x− c))(x− c)2dt
∥∥∥∥

≤M(x− c)2
∣∣∣∣∫ 1

0

(1− t)dt
∣∣∣∣

≤ M(x− c)2

2

Donc, par l’inégalité triangulaire,

∥∥∥∥∫ b

a

r(x)dx− (b− a)
r(a) + r(b)

2

∥∥∥∥ ≤ ∫ b

a

‖r(x)‖dx+ (b− a)
‖r(a)‖+ ‖r(b)‖

2

≤
∫ b

a

M

2
(x− c)2dex+

b− a
2

(
M

2

(
(b− c)2 + (a− c)2

)
≤ M

6

[
(b− c)3 − (a− c)3

]
+
M

8
(b− a)3

≤M(b− a)3
(

1

24
+

1

8

)
≤ M(b− a)3

6

D’où

∥∥∥∥∫ b

a

f(x)− P (x)dx− (b− a)
f(a) + f(b)

2

∥∥∥∥ ≤ M(b− a)3

6

≤ 1

6
max
ξ∈[a,b]

‖f ′′(ξ)‖ (b− a)3

Par suite, on a le résultat demandé avec c = 1
6
.

2. Méthode du point milieu :

f est de classe C2 donc, d’après Taylor Lagrange,

‖f(x+ h)− f(x)− f(x)h‖ ≤ M

2
‖h‖2

où M = maxξ∈[x,x+h] ‖f ′′(ξ)‖.
Pour c = a+b

2
on a

‖f(x+ h)− f(c)−Df(c)(x− c)‖ ≤ M

2
‖(x− c)‖2

‖f(x+ h)− f(c)− (x− c)f ′(c)‖ ≤ M

2
(x− c)2

où M = maxξ∈[c,x] ‖f ′′(ξ)‖.
D’autre part,
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∫ b

a

f(x)− (f(c) + (x− c)f ′(c)) dx =

∫ b

a

f(x)− (b− a)f(c)dx−
∫ b

a

(x− c)f ′(c)dx

Donc

∥∥∥∥∫ b

a

f(x)dx− (b− a)f

(
a+ b

2

)∥∥∥∥ ≤ ∫ b

a

‖f(x)− f(c)− (x− xc)f ′(c)‖ dx

≤ 1

2

∫ b

a

M(x− c)2dx, avec M = max
ξ∈[a,b]

‖f ′′(ξ)‖

≤ M

6

((
b− a

2

)3

+

(
b− a

2

)3
)
.

≤ M

24

(
b− a)3

8

≤ 1

24
max
ξ∈[a,b]

‖f ′′(ξ)‖ (b− a)3.

Exercice 2

Soit I un intervalle ouvert non vide de R, E un espace de Banach et f : I → E une application de
classe C2. Soit g : I × I → E une application définie par :

g(x, y) :=

{
1

x−y (f(x)− f(y)) si x 6= y

f ′(x) si x = y

1. Soit a ∈ I . Soient (x, y) ∈ I2 avec x 6= y.
(1-1) On considère l’application φ définie par

φ(z) =
1

x− y
(f(z)− f(y)− (z − y)f ′(a)) .

Montrer que φ est différentiable et donner sa différentielle.
(1-2) Montrer que

∥∥∥∥ 1

x− y
(f(x)− f(y))− f ′(a)

∥∥∥∥ ≤ sup
z∈]x,y[

‖Df(z)−Df(a)‖.

(1-3) Montrer que g est continue sur I .
2. Montrer que g est de classe C1 sur (I × I)\∆, où ∆ := {(x, x) : x ∈ I}.
3. En supposant que g est différentiable en (a, a), montrer que Dg(a, a)(h, k) = h+k

2
f ′′(a) pour tout

(h, k) ∈ R2.
4. Démontrer que g est différentiable en ( a, a ).
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Solution :

1. Soit a ∈ I . Soient (x, y) ∈ I2 avec x 6= y.
(1-1) φ est différentiable.
f est de classe C2 =⇒ φ est différentiable et que

Dφ(z)(h) =
1

x− y
(Df(z)(h)−Df(a)(h)) =

1

x− y
(Df(z)−Df(a))(h).

pour tout z ∈ R et h ∈ R.
(1-2) D’après T.A.F

∥∥∥∥∥φ(x)− φ(y) ≤ sup
z∈]x,y[

∥∥∥∥∥Dφ(z)‖.‖x− y‖.

Donc

∥∥∥∥ 1

x− y
(f(x)− f(y))− f ′(a)

∥∥∥∥ ≤ sup
z∈]x,y[

‖Df(z)−Df(a)‖.

(1-3) Montrer que g est continue sur I .

considère les applications
ψ1 : I ⊗ I 7→ E ⊗ I

(x, y) 7→ ψ1(x, y) = (f(x)− f(y), x− y).
ψ2 : E × I 7→ E

(u, λ) 7→ 1
λ
u.
.

Sur I ⊗ I\∆, où ∆ = {(x, x) : x ∈ I}, l’application g = ψ2 ◦ ψ1 est continue car les deux
applications ψ2 et ψ1 sont continues sur I ⊗ I\∆
Maintenat, soit (a, a) ∈ ∆.

‖g(x, y)− g(a, a)‖ =

∥∥∥∥ 1

x− y
(f(x)− f(y))− f ′(a)

∥∥∥∥ ≤ Supz∈]x,y[‖Df(z)−Df(a)‖.

Puisque Df est continue, alors g(x, x) 7→ g(a, a) quand (x, y) 7→ (a, a). Ce qui montre que g est
continue sur I
2. Montrer que g est de classe C1 sur (I × I)\∆.

Il est clair que ψ1 et ψ2 sont de classe C1 sur (I × I)\∆.
Donc g = ψ2 ◦ ψ1 est aussi de classe C1 sur (I × I)\∆.
3. Supposons que g est différentiable en ( a, a ). Cherchons un candidat pour Dg(a, a)

Le fait que g est différentiable en ( a, a ) implique que les différentielle partielles ∂g
∂x

(a, a) et ∂g
∂y

(a, a)
existent et on a

Dg(a, a)(h, k) =
∂g

∂x
(a, a)h+

∂g

δx
(a, a)k.

D’autre part, on peut décomposer f ′ comme suite : f ′ = g ◦ ψ où
ψ : I 7→ I ⊗ I(x, y) 7→ ψ(x) = (x, x).
Donc on aura
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Df ′(a)h = Dg(ψ(a, a))Dψ(a)h = Dg(a, a)(ha, h) =
∂g

∂x
(a, a)h+

∂g

∂x
(a, a)h.

Comme g est symétrique (g(x, y) = g(y, x)), alors ∂g
∂x
g(a, a) = ∂g

∂y
g(a, a).

Donc

Df ′(a)h = 2
∂g

∂x
(a, a)h. (1)

Puisque f est deuxx différentiable, f ′ est différntiable sur Va un voisinage de a, de plus ona

f ′(a+ h) = f ′(a) +Df ′(a)(h) + ◦(|h|) = f ′(a) + hf ′′(a) + ◦(|h|).

Donc Df ′(a)(h) = hf ′′(a).
L’éauqtion (1) implque que

∂g

∂x
(a, a)h =

1

2
hf ′′(a).

Conclusion :

Dg(a, a)(h, k) =
h+ k

2
f ′′(a).

4. Démontrer que g est différentiable en ( a, a ).

Soit X = (x, y) ∈ I × I et posons A = (a, a) ; on a

g(X)− g(A)−Dg′(A)(A−X) = g(x, y)− g(a, a)− x− a+ y − a
2

f ′′(a)

=
1

x− y
(f(x)− f(y))− f ′(a)− x− a+ y − a

2
f ′′(a).

Notons que

∫ 1

0

f ′(x+ t(y − x))dt =
1

x− y

∫ 1

0

h′(t)dt, avec h(t) = f(x+ t(x− y))

=
1

x− y
(h(1)− h(0))

=
1

x− y
(f(x)− f(y))

et que

∫ 1

0

(
x+ t(y − x)dt =

x+ y − 2a

2
.

Donc
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g(x, y)− g(a, a)−Dg(a, a)(x− a, y − a) =

∫ 1

0

f ′(x+ t(y − x))− f(a)− (x+ t(y − x)f ′′(a)dt

Puisque f ′ est différentiable en a, alors

f ′(z)− f ′a)− (z − a)f ′′(a) = (z − a)ϕ(z − a) avec lim
z 7→a

ϕ(z − a) = 0.

(il s’agit de montrer que
∀ε > 0∃η > 0‖(x, y)− (a, a)‖ < η =⇒ ‖g(x, y)− g(a, a)−Dg(a, a)(X − A)‖ < ε)
Soit, donc, ε > 0∃η > 0|z − a| < η =⇒ |ϕ(z − a)| < ε. (2).
Soit (x, y) ∈ I × I tel que ‖(x, y)− (a, a)‖ < η (c-à-d |x− a| < η et |y − a| < η ).
donc

∥∥∥∥g(x, y)− g(a, a)− x− a+ y − a
2

f ′′(a)

∥∥∥∥ ≤| ∫ 1

0

f ′(x+ t(y − x))− f(a)− (x+ t(y − x)f ′′(a)dt |

≤
∣∣∣∣∫ 1

0

(x+ t(y − x)− a)ϕ(x+ t(y − x)− a)dt

∣∣∣∣
≤
∫ 1

0

|x+ t(y − x)− a|‖ϕ(x+ t(y − x)− a)‖dt

≤ ε(|x− a|+ |y − x|)
≤ ε(|x− a|+ |y − a|+ |x− a|)
≤ 2ε(|x− a|+ |y − a|)
≤ 2ε‖(x, y)− (a, a)‖

Conclusion : g est différentiable en ( a, a ) et

Dg(a, a)(h, k) =
h+ k

2
f ′′(a)

Exercice 3

Soient E = C([0, 1],R) muni de la norme ‖.‖∞ et φ : E → E l’application définie par

∀f ∈ E,∀x ∈ [0, 1], Φ(f)(x) =
1

2

∫ x

0

f 2(t)dt

1. Expliquer pouquoi φ(f) ∈ E pour tout f ∈ E.

2. Montrer que φ et différentiable et que sa différentielle, au point f , est donnée par

∀h ∈ E,∀x ∈ [0, 1], DΦ(f)(h)(x) =

∫ x

0

f(t)h(t)dt

3. Montrer que φ est classe C∞ et calculer Dnφ(f) pour tout f ∈ E et n ≥ 2.



36 CHAPITRE 3. DIFFÉRENTIELLES D’ORDRE SUPÉRIEUR-FORMULES DE TAYLOR

Solution :

1. Soit f ∈ E. On a f 2 est continue sur [0, 1] donc elle admet une primitive F sur [0, 1]. Ainsi,
pour tout x ∈ [0, 1] on a

Φ(f)(x) =
1

2
(F (x)− F (0)

Ceci momtre que φ(f) ∈ E.
2. Montrons que φ et différentiable.

On considère l’aplication L : E 7→ E, définie par L(h)(x) =
∫ x
0
f(t)h(t) dt pour tout x ∈ [0, 1]. L est

linéaire (évident).
L est continue : en effet soit h ∈ E
‖L(h)‖ = Supx∈[0,1] L(h)(x) = Supx∈[0,1]

∣∣∫ x
0
f(t)h(t)dt

∣∣ ≤
Supx∈[0,1]

∫ x
0
|f(t)‖h(t) | dt ≤ ‖f ‖∞.‖h‖∞ .

Ce qui montre que L est application linéaire continue.
D’autre part, soit f ∈ E et h ∈ E. Pour tout x ∈ [0, 1] on a

(φ(f + h)− φ(f)− L(h))(x) =
1

2

∫ x

0

(f + h)2(t)− f 2(t)− 2f(t)h(t)dt

=
1

2

∫ x

0

h2(t)dt

Donc

‖φ(f + h)− φ(f)− L(h)‖ ≤ 1

2
‖h‖2∞

Ce qui montre que φ est différentiable en f et que sa différentiable est Dφ(f)(h) = L(h).
3. φ est de classe C∞.

D’abord φ est différentiable et sa différentielle est Dφ : E 7→ L(E)Dφ(f)(h) = L(h).
Il est clair que Dφ est linéaire ; provient de linéairité de l’intégrale.

Pour tout f ∈ E on a

‖Dφ(f)‖ = sup
h∈E,‖h‖=1

‖Dφ(f)(h)‖

= sup
h∈E,‖h‖=1

sup
x∈[0,1]

|Dφ(f)(h)|

≤ sup
h∈E,‖h‖=1

sup
x∈[0,1]

∣∣∣∣∫ x

0

f(t)h(t)dt

∣∣∣∣
≤ sup

h∈E,‖h‖=1

sup
x∈[0,1]

∣∣∣∣∫ 1

0

∣∣∣∣ f(t)‖h(t) | dt

≤ ‖f‖∞

Donc Dφ est linéaire continue. Ceci montre que φ est de classe C∞ et on a D(Dφ)(f) = Dφ et
Dn(Dφ) = 0 pour tout n ≥ 3.
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Exercice 4

Soit E un espace de Banach, I =]− a, a[ (avec a > 0 ) un intervalle de R et f une application de I
vers E. Soit y ∈]0, a[.

1. On suppose que f est de classe C2 et qu’il existe deux constantes positives A et B telle que,
pour tout x ∈ I, ‖f(x)‖ < A, ‖f ′(x)‖ < B. Montrer, en utilisant la formule de Taylor, que si
x ∈ [−y, y], ‖f ′(x)‖ < A/y +By.

2. On suppose que f est de classe C∞ et qu’il existe deux constantes positives M et K telles que,
pour tout n ∈ N et tout x ∈ I,

∥∥f (2n)(x)
∥∥ < M(2n)!Kn.

(a) Pour n ∈ N et x ∈ [−y, y], majorer
∥∥f (2n+1)(x)

∥∥.
(b) Montrer que si y2K < 1, la série

∑∞
n=0(n!)−1f (n)(0)(x, · · · , x) converge sur [−y, y] et a

pour somme f(x).

Solution :

1. Soit x ∈ [−y, y]. Utilisons la formule de Taylor-Lagrange à l’ordre 2 entre x et y, puis entre x
et −y. Nous obtenons

‖f(y)− f(x)− f ′(x)(y − x)‖ < 1

2
B · (y − x)2

et

‖f(−y)− f(x) + f ′(x)(y + x)‖ < 1

2
B · (y + x)2

d’où

f(y)− f(−y)− 2f ′(x)(y)‖ ≤ ‖f(y)− f(x)− f ′(x)(y − x)‖+ ‖f(−y)− f(x) + f ′(x)(y + x)‖

≤ 1

2
B ·
(
(y − x)2 + (y + x)2

)
≤ B ·

(
y2 + x2

)
.

Soit encore

2 ‖f ′(x)(y)‖ ≤ ‖f(y)− f(−y)‖+B
(
y2 + x2

)
≤ 2A+ 2By2.

Mais ‖f ′(x)(y)‖ = y ‖f ′(x)‖ car f ′(x) est linéaire et y > 0. On obtient finalement, après division par
y de l’inégalité obtenue : pour tout x ∈ [−y, y],

‖f ′(x)‖ < A/y +By.

(a) Soit n ∈ N et x ∈ [−y, y]. Appliquons à la fonction f (2n) les résultats de la question 1. Pour tout
x ∈ [−y, y], on a
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∥∥f (2n+1)(x)
∥∥ ≤M(2n)!Kn

(
1

y
+ (2n+ 1)(2n+ 2)Ky

)
(b) On suppose que y vérifie y2K < 1. Pour n ∈ N et x ∈ [−y, y], on a

∥∥∥∥f (2n)(0)
x2n

(2n)!

∥∥∥∥ ≤M
(
y2K

)n
∥∥∥∥f (2n+1)(0)

x2n+1

(2n+ 1)!

∥∥∥∥ ≤M
(
y2K

)n
+ 2M(n+ 1)

(
y2K

)n+1

Les séries de terme général (y2K)
n et (n+ 1) (y2K)

n+1 étant convergentes, la série

∞∑
n=0

1

n!
f (n)(0)(x, · · · , x)

est normalement convergente pour x ∈ [−y, y] ; comme elle est à valeurs dans l’espace complet E,
elle converge dans E. Il reste à montrer qu’elle a pour somme f(x). La formule de Taylor-Lagrange
appliquée à f à l’ordre p donne

∥∥∥∥∥f(x)−
p∑

k=0

1

k!
f (k)(0)(x, · · · , x)

∥∥∥∥∥ ≤
{
M (y2K)

n si p = 2n− 1

M (y2K)
n

+ 2M(n+ 1) (y2K)
n+1 si p = 2n

Dans tous les cas, le second membre a pour limite 0 quand p→∞ donc, pour tout x ∈ [−y, y],

f(x) =
∞∑
n=0

1

n!
f (n)(0)(x, · · · , x)
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Chapitre 4
Inversion locale - Fonction implicite

Exercice 1

Soient f et g deux fonctions de classe C1 sur R et à valeurs dans R. On suppose que pour tout
x, y ∈ R, f ′(x) 6= g′(y).
On considère l’application F : R2 → R2 définie par F (x, y) = (x+ y, f(x) + g(y)).

1. Montrer que F est de classe C1 sur R2 et déterminer sa différentielle.

2. Montrer que F est un C1-difféomorphisme de R2 sur son image.

Solution :

1. Pour (x, y) ∈ R2 on peut écrire F (x, y) = (F1(x, y), F2(x, y)) où
F1 : R2 7→ R et F2 : R2 7→ R

(x, y) 7→ x+ y. ? (x, y) 7→ f(x) + g(y).

il est clair que F1 et F1 sont de classe C1 puisque f et g sont de classe C1 et que pour tout (x, y) ∈ R2

et (x, y) ∈ R2 on a :

DF1(x, y)(h, k) =
∂F1

∂x
(x, y)h+

∂F1

∂y
(x, y)k = h+ k

et

DF(x, y
)

(h, k) =
∂F2

∂x
(x, y)h+

∂F2

∂y
(x, y)k = hf ′(x) + kg′(y).

Donc F et de classec C1 et pour tout (x, y) ∈ R2 et (x, y) ∈ R2 on a :

DF (x, y)(h, k) = (h+ k, hf ′(x) + kg(y)) .

2. F est un C1-difféomorphisme.

39
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Soit (a, b) ∈ R2, montrons que DF (a, b) est isomorphisme.
DF (a, b) : R2 7→ R est une application linéaire. Soit (h, k) ∈ R2

DF (a, b)(h, k) = 0⇐⇒ h+ k = 0 et hf ′(a) + kg′(b)

⇐⇒ h = − ketk (g′(b)− f ′(a)) = 0

=⇒ k = 0 car(a) 6= g′(b)

=⇒ h = 0.

Ceci montre que F est injective. et puisque les espaces sont de dimensions finie, alors DF (a, b) est
un isomorphisme pour tout (a, b) ∈ R2.

Pour démontrer que F est un C1-difféomorphisme, il suffit de montrer que F est injective. En effet
soient (x, y) et (a, b) dans R2

f(x, y) = F (a, b)⇐⇒ x+ y = a+ b et f(x) + g(y) = f(a) + g(b)

⇐⇒ x− a = b− y et f(x)− f(a) = g(b)− g(y).

D’autr part, d’après T.A.F appliqué à f et g, il existe c1 et c2 tel que

f(x)− f(a) = f ′ (c1) (x− a) et g(b)− g(y) = g′ (c2) (b− y).

Donc f ′ (c1) (x− a) = g′ (c2) (b− y) = g′ (c2) (x− a).
Puisque f ′ (c1) 6= g′(c), alors x = a et y = b. et par suite F est injective. D’après le corollaire de
l’inversion global, F est un C1-difféomorphisme.

Exercice 2

Montrer que le système suivant admet une solution unique dans R2


x =

1

4
sin(x+ y)

y = 1 +
2

3
arctan(x− y)

Solution : Rappellons que le théorème du point fixe dit qu’une application contractante sur un espace
m’etrique complet possède un point fixe.
On considère l’application f : R2 7→ R2 définie par f(x, y) =

(
1
4

sin(x+ y), 1 + 2
3

arctan(x− y)
)
.

On considère les applications
φ1 : R2 7→ R

(x, y) 7→ 1
4

sin(x+ y).
et

φ2 : R2 7→ R

(x, y) 7→ 1 +
2

3
arctan(x− y).

Il est clair que φ1 et φ2 sont différentiables sur R2 et on pour tout (h, k) ∈ R2

Dφ1(x, y)(h, k) =
1

4
cos(x+ y)h+

1

4
cos(x+ y)k

et
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Dφ2(x, y)(h, k) =
2

3

1

1 + (x− y)2
h+

2

3

−1

1 + (x− y)2
k.

Donc f est aussi différentiable (car ses composantes sont diffénrentiable) et on a

Df(x, y)(h, k) =

(
1

4
cos(x+ y)(h+ k),

2

3

1

1 + (x− y)2
(h− k)

)
,

pour tout (x, y) ∈ R2 et (h, k) ∈ R2.
On considère sur R2 la norme ‖.‖1 c’est-à-dire ‖(h, k)‖1 = |h|+ |k|. Donc pour tout (x, y) ∈ R2 et
(h, k) ∈ R2 on a

‖Df(x, y)(h, k)‖ ≤ 1

4
|h+ k|+ 2

3
|h− k| ≤ 11

12
(|h|+ |k|) ≤ 11

12
(‖(h, k)‖.

Ainsi,

‖Df(x, y) ≤ 11

12

Ceci montre que f est contractante et d’après le théorème du point fixe l’équation f(x, y) = (x, y)
admet une soltion unique.

Remarque : Ici on a considéré la norme ‖.‖1.
Attention, le choix de la norme est important car, par exemple ‖Df(0, 0)(1,−1)‖∞ = 4

3
.

Exercice 3

Soit E un espace de Banach et Ω = I som (E). On considère l’application φ : Ω→ L(E) telle que
φ(u) = u2 − 2u+ u−1.

1. Montrer que φ est classe C1 sur Ω. Déterminer sa différentielle et donner Dφ (IdE).

2. Montrer qu’il existe un voisinage ouvert V0 de 0 , dans L(E), tel que ∀v ∈ V0 il existe u ∈ Ω
telque

u3 − 2u2 − uv + IdE = 0

Solusion :

1. φ est classe C1.

Les applications u 7→ u2, u 7→ 2u et u 7→ u−1 sont de calsse C1 sur Ω.
Donc φ est classe C1 sur Ω, et pour tout u ∈ Ω et h ∈ E on a :

Dφ(u)(h) = uh+ hu− 2h− u−1 ◦ h ◦ u−1
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Pour u = IdE on a Dφ (IdE) (h) = 2h− 2h− h = −h donc Dφ (IdE) = −IdE .
2. L’application φ est de classe C1 et Dφ (IdE) = −IdE est un isomorphisme de L(E) vers L(E).
D’après le théorème de l’inversion local, il existe U voisinage de idE dans Ω, il existe V0 voisinage de
φ (IdE) = 0 dans L(E) tel que φ : U 7→ V0 est diffeomorphisme.
Donc ∀v ∈ V0 il existe u ∈ Ω telque φ(u) = v c’est-à-dire

u3 − 2u2 − uv + IdE = 0

Exercice 4

On considère l’équation intégrale suivante, dite équation intégrale de Fredholm de deuxième espèce :

y(t) = f(t) +

∫ 1

0

K(t, s)y(s)ds (4.1)

où f ∈ C([0, 1],R) et K ∈ C ([0, 1]2,R) sont données et y est l’inconnue. On suppose que

sup
0≤t≤1

∫ 1

0

|K(t, s)|ds < 1

Démontrer que (4.1) possède une unique solution dans C([0, 1],R).

Solution :

Posons E = C([0, 1],R), k = sup0≤t≤1
∫ 1

0
|K(t, s)|ds et soit T : E → E le fonctionnel défini par :

T (x)(t) = f(t) +

∫ 1

0

K(t, s)y(s)ds

Alors, l’équation (4.1) admet une solution si et seulement si l’opérateur T admet un point fixe. Il est
connu que E muni de la norme ‖.‖∞ est un espace métrique complet. Soient x, y ∈ E, alors

‖T (x)− T (y)‖∞ = sup
t∈[0,1]

|T (x)(t)− T (y)(t)|

= sup
t∈[0,1]

∣∣∣∣∫ 1

0

K(t, s)x(s)ds−
∫ 1

0

K(t, s)y(s)ds

∣∣∣∣
et comme |x(s)− y(s)| ≤ ‖x− y‖∞ pour tout s ∈ [0, 1]. Alors

sup
t∈[0,1]

∣∣∣∣∫ 1

0

K(t, s)x(s)ds−
∫ 1

0

K(t, s)y(s)ds

∣∣∣∣ ≤
(

sup
t∈[0,1]

∫ 1

0

|K(t, s)|ds

)
‖x− y‖∞

ainsi

‖T (x)− T (y)‖∞ ≤ k‖x− y‖∞
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D’après le théorème du point fixe de Banach-Picard, T admet un unique point fixe, qui est l’unique
solution de l’équation (4.1).

Exercice 5

Soit E un espace de Banach. On note IE : x→ x l’application identité de E.
On considère l’application φ : L(E)→ L(E) définie par φ(u) = u ◦ u pour u ∈ L(E).

1. Montrer que φ est de classe C1 sur L(E) et calculer sa différentielle.

2. Montrer qu’il existe α > 0 tel que pour tout v ∈ L(E) vérifiant ‖v − IE‖ < α, l’équation
u ◦ u = v possède une solution dans L(E).

3. On suppose que E = R2, et on considère les éléments u et h de L(E) dont les matrices dans la
base canonique de R2 sont respectivement :

Mu =

(
−1 0
0 1

)
et Mh =

(
0 1
0 0

)
3-a. Calculer Dφ(u).h
3-b. En déduire qu’il n’existe pas de fonction différentiable ψ :WI →Wu, oùWI est un voisinage
de IE etWu voisiange de u dans L(E), telle que

ψ (IE) = u et ψ(w) ◦ ψ(w) = w pour tout w ∈ WI .

Splution :

(1) L’application φ est de classe C1 sur L(E) comme composée de deux applications :
φ1 : u 7→ (u, u) (qui est de classe C1 car ses composantes sont IL(E) de classe C1 ) et de
φ2 : (u, v) 7→ u ◦ v qui bilinéiare continue donc de classe C1. D’après la formule de différentiation
des fonctions composées on a :

Dφ(u)(h) = u ◦ h+ h ◦ u

pour tout h ∈ L(E) et h ∈ L(E).
(2) D’après la formule ci-dessus, Dφ (IE) (h) = 2h pour tout h ∈ L(E). Donc Dφ (IE) = 2IL(E),
c’est un isomorphisme. Donc d’après le théorème d’inversion locale, φ est un difféomorphisme local
en IE , c’est-à-dire il existe un voisinage U de IE et un voisinage V de φ (IE) = IE tels que, pour tout
v ∈ V il existe un unique u ∈ U tel que φ(u) = v.
En prenant ε > 0 tel que la boule B (IE, ε), de centre IE et de rayon ε, soit incluse dans V , on en
déduit que pour tout v ∈ L(E) vérifiant ‖v − IE‖ < ε, l’équation u ◦ u = v possède au moins une
solution dans L(E) (et en fait une seule dans U).
3-a. Par un calcul simple, on peut voir que le les matrice Mu et Mu satisfont Mu ·Mh = Mh ·Mu.
Donc

Dφ(u) · (h) = 0.
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3-b. Supposons, par l’absurde, qu’il existe une fonction différentiable ψ :WI →Wu, oùWI est un
voisinage de IE etWu voisiange de u dans L(E), telle que

ψ (IE) = u et ψ(w) ◦ ψ(w) = w pour tout w ∈ WI .

C’es-à-dire φ ◦ ψ(ω) = ω pour tout ω ∈ WI .
Donc, par la différentiation de l’application ω 7→ φ ◦ ψ(ω)− ω, on obtient

Dφ (ψ (IE)) ◦Dψ (IE) (k) = Dφ(u) ◦Dψ (IE) (k) = k

pour tout k ∈ L(E). Donc Dψ (IE) serait injective. En effet, pour tout k ∈ L(E)

Dψ (IE) (k) = 0 =⇒ Dφ (ψ (IE)) ◦Dψ (IE) (k) = 0

=⇒ k = 0.

Par conséquent Dψ (IE) est bijective car L(E) est de dimension finie.
En choisissant K tel que Dψ (IE) k = h, on en déduit que

Dφ(u)(h) = k.

Donc k = 0 (car Dφ(u)(h) = 0 ), ainsi h = 0 ce qui est évidemment faux.

Exercice 6

Soit E = C([0, 1]) l’espace des fonctions continues de [0, 1] dans R muni de la norme
‖f‖∞ = supt∈[0,1] |f(t)|.
On considère l’application F : E → E définie par :

∀f ∈ E ∀x ∈ [0, 1] F (f)(x) =

∫ x

0

f 2(t)dt

1. Montrer que l’application F est différentiable et calculer sa différentielle.

2. Montrer que ∀f, g ∈ E, on a ‖DF (f)−Df(g)‖ ≤ 2‖f − g‖.

En déduire que l’application F est de classe C1.
3. Montrer que : ∀f, g ∈ B : ‖F (f)− F (g)‖∞ ≤ 2‖f − g‖∞ où B = {f ∈ E/‖ f‖∞ < 1} la
boule unité ouverte de E.
4. On pose φ = I + 1

2
F , où I : x 7→ x l’application identité de E.

(a) Montrer que Dφ(f) est inversible pour tout f ∈ B.
(b) Montrer que φ est un C1-difféomorphisme de la boule B sur son image.

Solution :

1. Soit f ∈ E. Pour h ∈ E et x ∈ [0, 1] On a
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(F (f + h)− f(f))(x) =

∫ x

0

(f + h)2(t)− f 2(t)dt

= 2

∫ x

0

f(t)h(t)dt+

∫ x

0

h2(t)dt

= L(h)(x) + F (h)(t)dt

Où L : E 7→ E est une application définie par L(h)(x) = 2
∫ x
0
f(t)h(t)dt pour tout tout h ∈ E et

x ∈ [0, 1].
Il est clair que L est linéaire et elle est continue. En effet pour tout h ∈ E on a
‖L(h)‖ = supx∈[0,1] |L(h)(x)| ≤ 2 supx∈[0,1]

∫ x
0
|f(t)h(t)|dt ≤ 2 supx∈[0,1]

∫ 1

0
|f(t)h(t)|dt ≤ ‖f‖‖h‖.

Par ailleurs, on a ‖F (h)‖ ≤ ‖h‖2, de sorte que F (f + h)−F (f)−L(h) = ◦(‖h‖). Et par suite F est
différentiable et sa différentielle est donnée par

DF (f)(h)(x) = 2

∫ x

0

f(t)h(t)dt

2. Soient f, g ∈ E, on a

‖DF (f)−DF (g)‖ = sup
h∈E,‖h‖=1

‖DF (f)(h)−DF (g)(h)‖

= 2 sup
h∈E,‖h‖=1

(
sup
x∈[0,1]

∣∣∣∣∫ x

0

(f(t)− g(t))h(t)dt

∣∣∣∣
)

≤ 2 sup
h∈E,‖h‖=1

(
sup
x∈[0,1]

∫ x

0

|(f(t)− g(t))h(t)|dt

)
≤ 2 sup

h∈E,‖h‖=1

‖f − g‖‖h‖.

≤ 2‖f − g‖

On en déduit que DF est Lipschitzienne, et par suite continue.
Conclusion F est de classe C1.
3. En posant dans 2g = 0, on ontient ‖DF (f)‖ ≤ 2‖f‖ pour tout f ∈ E. En particulier, DF (f) ≤ 2
pour tout f ∈ B.
Puisque F est différentiable et B est convexe, alors d’après T.A.F, pour tout f, g ∈ B

‖F (f)− F (g)‖ ≤ sup
h∈[f,g]

‖DF (h)‖‖f − g‖ ≤ 2‖f − g‖

4. On pose φ = I + 1
2
F .

(a) Montrer que Dφ(f) est inversible pour tout f ∈ B.

D’abdord φ est de classe C1 en tant que somme de deux applications de classe C1 et
Dφ(f) = I + 1

2
DF (f) pour tout f ∈ E D’où, d’après 2, ‖Dφ(f)− I‖ = 1

2
‖DF (f)‖ ≤ ‖f‖ pour

tout f ∈ E.
Ainsi, pour tout f ∈ B, ‖Dφ(f)− I‖ < 1. Ceci montre que Dφ(f) est inversible.
(b) Montrer que φ est un C1-difféomorphisme de la boule B sur son image.

Pour f ∈ B, on a Dφ(f) est inversible. D’après le Théorème d’inversion local, il existe un voisinage
ouvert U de f dans B tel que φ/U est un C1-difféomorphisme. D’où φ est un C1-difféomorphisme
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local. Pour, montrer que φ est un C1 difféomorphisme de la boule ouverte B sur son image φ(B), il
suffit de montrer que φ est injective. En effet, Soient alors f, g ∈ B tels que φ(f) = φ(g) c’est-à-dire
F (f)− F (g) = 2(f − g).
Donc ‖F (f)− F (g)‖ = 2‖f − g‖. En utilisant l’inégalité des accroissements finis, on trouve

‖f − g‖ = ‖F (f)− F (g)‖ ≤ sup
h∈[f,g]

‖DF (h)‖‖f − g‖

Supposons que f 6= g. Alors on trouve suph∈[f,g] ‖DF (h)‖ = 2.
Mais [f, g] étant compact, il existe h ∈ [f, g] tel que ‖DF (h)‖ = 2, ceci est absurde car
‖DF (h)‖ ≤ ‖h‖ < 2 pour tout h ∈ B.
D’où f = g et par suite φ est injective.
On en déduit que φ est un C1-difféomorphisme de la boule ouverte B sur son image φ(B).

Exercice 7

On considère le système d’équations suivant :


x3 + y3 + z3 + t2 = 0
x2 + y2 + z2 + t = 2
x+ y + z + t = 0

1. Vérifier que le point (0,−1, 1, 0) est une solution du système.

Montrer que l’on peut résoudre ce système par rapport à ( x, y, z ) au voisinage de ce point.
2. Calculer la dérivée en 0 de la fonction t 7→ (x(t), y(t); z(t)).

Solution :

1. Il est facile de vérifier que le point ( 0,−1, 1, 0 ) est une solution du système ( S ).

On considère l’application f : R3 × R 7→ R3 définie par

f((x, y, z), t) =
(
x3 + y3 + z3 + t2, x2 + y2 + z2 + t− 2, x+ y + z + t

)
.

Il est clair que f est de classe C1 et que f((0,−1, 1), 0) = (0, 0, 0).
La matrice Jacobienne de sa différentielle partielle f ′M(M, t) par rapport à sa première variable
M = (x, y, z) est

 3x2 3y2 3z2

2x 2y 2z
1 1 1



En particulier, D1f((0,−1, 1), 0) =

 0 3 3
0 −2 2
1 1 1

, dont le déterminat est 12 6= 0.
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D’après le Théorème des fonctions implicites, il existe un voisinage I de 0 dans R, un voisinage V de
(0,−1, 1) dans R3 et une application ψ : I 7→ V de classe C1 tels que

∀((x, y, z), t) ∈ V × I, f((x, y, z), t) = f((0,−1, 1), 0)⇐⇒ (x, y, z) = ψ(t).

c’est-à-dire ∀t ∈ I(x(t), y(t), z(t)) est une solution du système (S) ; où (x(t), y(t), z(t)) = ψ(t).
2. Par le théorème des fonctions implictes

ψ′(t) = −D1f(0,−1, 1, 0)−1 ·D2f(0,−1, 1, 0);

où D2f(0,−1, 1, 0) =

 0
1
1

. On en déduit que

ψ′(0) = −

 0 3 3
0 −2 2
1 1 1

−1 ×
 0

1
1

 =

 −1
−1
0

 .

Exercice 8

On considère la fonction f : R3 7→ R définie par

f(x, y, z) = x2y + ex + z

1. Vérifier que f(0, 1,−1) = 0.

Montrer qu’il existe un voisinage V de (−1, 1) dans R2 et une fonction φ : V 7→ R de classe C1 tels
que φ(1,−1) = 0 et f(φ(y, z), y, z) = 0 pour tout (y, z) ∈ V .
2. Calculer Dφ(1,−1).

Solution : (1) Il est facile de vérifier que f(0, 1,−1) = 0.
On a ∂f

∂x
(0, 1,−1) = 1 6= 0. D’après le théorème des fonctions implicites, il existe un voisinage V de

(−1, 1) dans R2, un voisinage I de 0 dans R et une appliaction φ : V 7→ I de classe C1 tels que
∀(x, (y, z)) ∈ I × V f(x, y, z) = f(0, 1,−1) = 0 ⇐⇒ x = φ(y, z),
ou en d’autre termes f(φ(y, z), y, z) = 0 pour tout (y, z) ∈ V . (2) Calculer Dφ(1,−1). D’après
théorème de la fonction implicite, on a
Dφ(1,−1) = −

(
∂f
∂x

(0, 1,−1)
)−1

D1f(0, 1,−1) où D1f(0, 1,−1) est la différentielle partielle de f
relativement aux coordonnées y et z, i.e elle est représentéepar le vecteur( ∂f

∂y
(0,1,−1)

∂f
∂z

(0,1,−1)

)
=
(
0
1

)
.

On en déduit que Dφ(1,−1) : R 7→ R2 est l’application linéaire représentée par le vecteur (0,−1)
relativement aux bases canoniques, c’est-à-dire Dφ(1,−1)(t) = (0,−t) pour tout t
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