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Chapitre 1

Espaces de Banach et Applications linéaires

Table des matieres

Exercice 1

Soit £ un espace vectoriel normé sur K = R ou C.

1. Montrer que tout sous-ensemble compact de £ est un fermé borné de E.
2. Montrer que si F est de dimension finie, alors £ est un espace de Banach.

3. Montrer que si F est de dimension finie, alors toutes les normes (possible) sur £ sont
équivalentes.

4. (1) Soit I un sous espace vectoriel propore fermé de £. Montrer que pour tout £ > 0, il existe
x € Etelque ||z|| = letdist(z, F) >1—¢
(i1) En déduire que si la boule unité fermée de E' est compact, alors F est de dimension finie.

Solution :

1. Soit K une partie compacte de F,
K est fermé :
Soient (z,) C K etx € E tel que : ,, — x. Puisque K est compact, alors il existe une
sous-suite (4(n)) de la suite (z,) telle que z4(,) — y € K.(¢ : N — N strictement
croissante).
Le fait que x,, — x implique que x4,) — , et par I'unicité de la limite on en déduit que
y =z, donc x € K, par suite K est un fermée de E.
K est borné : Supposons, par I’absurde, que K n’est pas bornée dans E, C’est-a-dire :

(VM >0),(3z € K) : ||z|| > M

Alors (Vn € N), (3, € K) : ||z,|| > n. Puisque K est compact, il existe une application

¢ : N — N strictement croissante tel que : (a:¢(n)) soit convergente, en particulier elle est bornée.
Maisona: (Vn € N) : ||zgm) | > ¢(n) = n, et ceci contredit le fait que ( 2, ) est bornée.
Conclusion : K est bornée dans .



6 CHAPITRE 1. ESPACES DE BANACH ET APPLICATIONS LINEAIRES

2. On suppose que F est de dimension finie : dim(£) = n et montrons que £ est un espace de
Banach.

Si d = 0, alors la seule suite appartient a £ est la suite constante nulle qui est convergente dans

(E, ||||.)estde Banach.supposonsdoncque dim(E) = n > 0.

Puisque la dimension de £ est finie, alors il suffit de prouver que £ est complet pour une norme bien
choisit. dans cette question on munie F par la norme ||.||; définie pour un vecteur

z € Ededelaformez =3¢ A.es,par: |zfy = S0, [\l

Soit (x,,), une suite de Cauchy dans (E, || - ||1), alors pour tout n € N, ona:

T, € E= 3 Min- s \in) EK?: 1, = Ele Ain-€; etdonc (x,), = (Zle )\i,n.ei> . d’ailleurs
pour tout ¢ € {1,...,d} lasuite (\; ), estune suite de Cauchy dans (K, |.|), en effet;

n>=>N

(Ve > 0), 3N €N), (V(n,m) € N?) : { m> N

= i = Aign| < ln — 2wl <

Or K est complet, d’ou elle est convergente, soit [; = lim,,_, {; ,, alorson a :

€

(V6>0),(E|NZ€N),(Vn€N)n}Nz:>|)\m—l2]<d

Ona: flo — il = [ £y Cin — 1) - e = Xy i — bl
d

Par suite si on pose, ng = maxj<;<q N;etl =) ., l; - e;, alors pour toutn € N, on a:

n=ng=Vie{l,....d} :ng = N,
:>Vie{1,...,d}:]Ai7n—li|<2
= ||z, —1]|; <€

Ainsi (z,),, est convergente dans (E, ||.||1).
Conclusion : (E, ||.||;) est complet.
3. On suppose que F est de dimension finie, soit dim(E) = n.

Soit B = (ey,...,e,) une base de F.
On définit sur £ la norme ||. ||« telle que ||z][o = [|D01; @iei]| = maxi<icn 7], avec

n
T =) Tie; et ($i)1<i<n c K
Soit N une norme sur F,

— Montrons d’abord que : N : (E, ||.||oo) — (R, ||.)estcontinue.

En effet, soient z = )" x;e; ety = Y - y;e; deux éléments de £, C' = max;<;<, NV (e;) (> 0) et
M=Cn;ona:

ot C' = maxi<;<n, N (e;) (> 0). Donc



N(z —y) < nCllz = yllo

D’autre part, d’apres 1’inégalité triangulaire inverse de la norme N on a :
IN(z) = N(y)| < N(z —y) = [N(z) = N(y)| < M|z — yl|oc ot M = nC.
Alors N est une application M - Lipschitzienne, par suite elle est continue.

— Soit S := ). = {r € E: ||#||c = 1} la sphere unité de ( F, |||l )
S est fermé car c¢’est I’image réciproque de {1}, qui est fermé, par I’application continue
2 || o
S est bornée dans (£, ||.||)-
Puisque £ est de dimension finie, donc S est un compact de ( £, ||.||« )-
Le fait que N est une application continue sur le compact .S montre que N est bornée et atteint ses
bornes dans S. C-a-d il existe (a, b) € S? telles que

m = N(a) < N(z) < N(b) = M pourtout z € S

Puisque N (a) # 0 et N(b) # 0,doncm > 0et M > 0.
D’autre part, pour tout z € F\{0},ona:

1
- ES:>m<N< ° )<M:>m<” || N(z) < M = m-||z]|oc < N(x) < M.||7]c
Tloo

Et puisque la derniere inégalité est vrai pour x = O, alors on conclut que :

(Vo € E)m.||z]l < N(z) < M.||2]|o

Donc les normes N et ||.||, sont équivalentes.

Conclusion : toute les normes sur un K-espace vectoriel de dimension finie sont équivalentes.

4. (i) : Soiente > Oetu € Etel que : u ¢ F, alors d(u, F') > 0; Car F est un sous-espace vectoriel
propre fermée de E. Posons 0 = d(u, F').

1Sil—e<0,(<=¢e>1),ona:u# 0g, alors il suffit de choisir z = Ty €t dans ce cas |z|]| =1
etd(z,F) >0>1—c¢.

2Sil—¢e>0,(<= e < 1),dapres la propriété caractéristique de la borne inférieure, il existe

vy € F tel que :

de o 1 l1—¢
< ||lu—w|| <d+—<= < |lu—w < = >
l—¢ l—¢ ||lu — vy o
Posons & = pi=r, alors |z|| = 1 etpourtouty € F,ona:
U — Vo [ — (vo + [lu — woll - )l 1-
o=yl | -] - — oyl > 6155 = oy > 1
[l = wo| [ = wo|

Car vy + ||lu — vo|| .y € F,donc ||z]| =1letd(z,F) > 1—e.
(i1) : On suppose que la boule fermée unité de £ est compact et £ est de dimension infinie, donc tout
sous-espace de E de dimension finie est propre.
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On choisit d’abord un vecteur unitaire arbitraire x, et on applique (i) ; (pour € = % ) a la droite

Fy := vect {zo} qu’il engendre (elle est de dimension finie donc fermée dans F) : il existe un vecteur
unitaire x; tel que : d (xq, Fy) > % Puis on applique (i) au plan F engendré par ( zg, x; ) (elle est de
dimension finie donc fermée dans F, il existe un vecteur unitaire x5 tel que : d (xs, F}) > % etc.., On
obtient ainsi dans la boule unité fermée une suite (), qui vérifie par construction :

V(n,m):n#m=d(x,,Tm) = (1.1)

DO | —

donc la suite (z,,) C By (0g, 1) qui ne possede aucune sous-suite convergente , absurde ; car s’il
existe une application ¢ : N — N strictement croissante telle que : (a:¢(n)) est convergente, alors (
Tg(n) ) sera de Cauchy, et ceci contradictoire avec (1.1).

Ainsi E est de dimension finie.

Exercice 2

Soit n € N. Montrer qu’il existe une constante C',, > 0 telle que pour tout pour tout polynéme
unitaire de degré n, P € R, [X], on ait fol |P(t)|dt > C,.

Solution :

Soit n € N, on consideére £ = R,,[X] I’espce vectoriel des polyndomes de degré inférier ou égale a n.
On considere sur E les normes suivantes : pour P(X) = >"" ja; X"

NPy =Y ol et NQ(P):/O P(0)|dt

Puisque dim(E) < oo, alors les deux normes Ny et Ny sont équivalentes.
Donc il existe 3C),, > 0 tel que No(P) > C,,N;(P) pour tout P € F.

Pour un polynéme unitaire P = ag + . ...+ a,1 X" + X" ona Ny (P) > 1.
D'ou [, |P(t)|dt > C,.

Exercice 3

(Application linéaire non continue)

1. Soit £ := C>([0, 1], R). On considére 1’application Dérivation D : E — FE définie par
D(f) = f' pourtout f € E. Montrer que D n’est jamais continue sur F ( quelle que soit la
norme dont on munit £ ).

2. Soit £ = R, [X], ’espace des polyndmes a coefficients réels et de degré inférieur ou égale a n,
muni de lanorme || P|| = >, |ax| ov P(X) = Y, apr X"
Montrer que I’application D : E — F, définie par D(P) = P’, est continue.

3. Soit F = R[X], I’espace des polyndmes a coefficients réels muni de la norme
1P| = 3"k lar| ot P(X) = 370 o arX*.
Montrer que I’application D : £ — FE, définie par D(P) = P’, n’est pas continue.



Solution :

(1) Soit N une norme sur F.

Pour a € R, la fonction f, : x — e est dans E, et elle vérifie D (f,) = af,.
Supposons que D est continue pour la norme NV, puisque D est linéaire, il existe C' > 0 tel que

N (D (fa)) < CN (fa)

On obtient, alors, pour tout a € R

|a[N ((fa)) < CN (fo) = la| < C

C’est bien sir impossible, et D n’est pas continue sur (E, NV).
(2) Puisque D est une apllication linéaire et I est un esapce de dimension finie, alors D est continue.
(3) Supposons que D est continue. Alors il existe C' > 0 telle que

vPe E |D(P)| <C|P]

Soitn € N, pour P = X", on trouve D(P) = na™"! et donc

n=|DP)<C|P|=C

Ceci est impossible car N n’est pas majoré. D’ou D n’est pas continue.

Exercice 5

Soient E et F' deux evn, dim & > 1, et u une application linéaire continue de I dans F'.

1. Montrer qu’il existe une suite ( x,, ) d’éléments de E telle que :

VneN, |lzaf| =1 et lim fju(a,)]| = [u]
2. Montrer que si dim ' < 400, alors il existe z € E, ||z|| = 1, tel que |[u(z)|| = ||u|.

3. Soit F := C([0, 1], R) muni de la norme || f||; = fol | f(t)|dt. On définit une application linéaire
V:FE — Epar:

Vfe EVx e [0,1,V(f)(x)= /Ox f(t)dt

(a) Montrer que V' est continue sur E.

(b) Soit (f,),~ la suite d’éléments de E définie par : f,(x) = ne ™", (n > 1,0 < x < 1). Calculer
| full, et IV (fa)ll,» et en déduire la norme de 1’application linéaire V.

(c) Montrer par I’absurde, qu’il n’existe pas de f € E'telle que || f||; = Let ||V = ||V (f)]]1.
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Solution :

1. On a u est une application linéaire continue, alors ||u|| est finie.

Soit n € N, alors il existe z,, € E telle que : ||z,]| p = Let [Jul — =5 < ||lu(z,)] 5 < [Jull.
Donc, la suite ( z,, ) vérifiée

1
¥ €N, [lzallp =1] et \vn €N, Jlull — ———= < Jlu(za)[p < [lu]

Et par passage a limite dans I’inégalité précédente on aura, lim,,_,  ||u (2,)|| = |lul/, d’ol le
résultat.

2. On suppose que E est de dimension finie, d’apres la question précédente, il existe une suite (z,,)
d’éléments de la boule unité de E telles que :

¥ € N, ol = 1 et |t )l =

Or la dimension de £ est finie, d’ou la boule unité de £ est un compacte de £, donc il existe une
application ¢ : N — N telle que : (x¢(n)) est convergente vers un élément x de la boule unité de F ;
i.e ||z||g = 1, De plus la suite ( 4(,,) ) Vérifiée :

i € Nl = 1]t [ i o) = o]

n——+oo

Et par passage a la limite dans I’égalité et I’inégalité précédentes et grace a la continuité des normes
IIlle, ||| 7 et I’application w, on aura :

l2lle = Tet [[u(@)[r = |[ull

3. (@) Soit f € F,ona:

|Wmm=[wvw> dt = ||V (f m\/(/u )t

Jy £w) - du| < [y 1f()l.duet fy |f(u)].du < J; 1f(w)].du

- du| -

Car, Vt € [0; 1],
Donc,

V(NI </0 [fll-dt = IV(Hll < [1f]h

Et puisque V' est une application linéaire, alors elle est continue.
(b) Soientn € N*ett € [0;1],ona:

t
(fn fn du—/ne nu du—[ —nu} — 1 e
0

Donc,
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— | fally = fo [ fa®)]dt =V (fu) 1) =1 —e"
V=l V() @] -dt= i1 —e ™ dt=[t+ Le ], =1+ 1 — 1

nen n

D’une part, ¥n € N*, f,, € B(0g, 1), ou B (0g, 1) est la boule unité de E. alors :
(vf € B, IVIL < £l
= (Vf € B(0g,1)) : ||V < 1=—||u 1
{ Hu” zsupr||1<1 HV( )Hl ( f ( E )) H ( )Hl ||fH1 ” H
(fu)lly> or suppen- IV (fu)lly =

Car,

1 1
(0 €NV )l =1+ = 2 VUl <] e i V()] =1

Ainsi, ||ul| =1
1fll =1

(c) On suppose qu’elle existe f € E telles ue:{
PPose I WL = VI =1

Ona: |V(f)lli= [ |J7 f(t).dt|.dz. Donc

V(s Hl_/ ([ vol-at) o
< [ ([ sn-ae— [ 1)) i
< [ (1= [ 1501 -ar) -
< [t [ ([ 10rat) as
<= [ ([ 1ol a)-a

Donc 0 < |} (f; ]f(t)\.dt) dz < 0;Car (V)| = ||, = 1) Ce qui montre que

(Vz € [0;1)), fxl |f(t)].dt = 0 et fol |f(t)].dt = 0. Ainsi f = Op. Et ceci contradictoire avec le fait
que || f]l1 = 1.

o : - £l =1
Ainsi, il n’existe aucun élément f de E telles que :
I we: { [P <1
Exercice 6
Soient d € N*, (Ej, || - ||i);<;<, €t (F ]| - ||») des espaces vectoriels normés sur K et posons
d
E=]]E
i=1

1. Montrer que si F est complet, alors ( L (E, ..., E, : F),|.||)estaussicomplet.

2. Montrer que si les espaces vectoriels Fj, ..., F/y sont de dimension finie, alors toute
application f : £ — F multilinéaire est continue.
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Solution :

1. Soit ( f,, ) une suite de Cauchy dans ( £ (Ey, ..., E, : F),|.||), alorsona :

(Ve > 0), 3N € N), (V(n,m) € N?) : { :é]y\, = [|fu — [l <€

ou encore,

n>N

ms N — (X EE)fulX) = fu(X)p < e llwally - - llzallg

(1.2)

(Ve > 0), (AN € N), (V(n,m) € N?) : {

Soit X = (z1,...,x4) un élément de F, (1.2) entraine que (f,(X)) est une suite de Cauchy dans F,
or F' est complet , alors elle est convergente dans F'.

On dispose donc, d’une application f : E — F, X = (xq,...,24) — f(z) = lim,,_, fn(X).
Donc, il suffit de prouver que f € L (Ey,..., E, : F) etlasuite (f,,) est convergente vers f. - f est
multilinéaire : Soient i € [1;d], (2, 2}) € By, x; € E; pour j € [1;d]\{i} et \ € K, alorsona:

f(q:l,...,)\.xl-—i—x;,...,xd):li}znfn(q:l,...,)\.:cl-—i—x;,...,xd)
7M€ place
:lirrln)\.fn(ml,...,xi,...,xd)+fn(a:'1,...,a:§,...,xd)
:)\.liinfn(xl,...,xi,...,xd)+liTrLIlfn(x1,...,a:;,...,xd)

=ANf (21, . miy o xg) + f (2,2 Tg)

— f est continue : En faisant tendre m vers I’infini dans (1.2), on trouve :

(ve > 0), (3N € N), (¥n € N) :n > N = (VX € B), | fulX) = F(X)lp <& aall, .. loall,
(1.3)

D’une part, il existe p € N, telle que :
(VneN),n>p= (VX € E), | fu(X) = F(X)|lp < [l2ally - - [|2ally

D’autre part, I’application f,, est continue, alors :

(M >0), (VX € E), [[fo(X)llp < M- l2ally - - [lzall4

Or Pourtout X € F,ona:

17O < X)) = L p + (15X

[2ally - llally + Mozl - lzallg

<
< |
< (L+ M)zl - [Jzall,

Donc f est continue.
— (fn) — [ : 1l découlent de (1.3).



Conclusion : (L (Ey,..., E
2. On suppose que Fjy, . ..,
multilinéaire.

Pour tout i € [1;d], soient :

- m; = dim (E;).
- BU = (el),eg),...,e%)i) une base de F;.

13

F),||].) est complet.
E, sont de dimension finie et soit f : ' — F' une application

Soit X = (z1,...,24) un élément de F, alorson a :
(di e ), (3(A0 A0 €K™ =30 A0
Ji=1
Alors,
) ()
S (S S S )
Jji=1 Jo=1 Ja=1
mi mq
_ (1 (1) (d)  (d)
—zAﬁf(ﬂ,zA zx)
Jji=1 Jo=1 Ja=1
(2)
3 (e 3 )
J1=1 Jj2=1 ja=1
NS N, O ) (@
:ZZ"'Z/\J&')\JQ' f(]l’]2""’]d>
Jji1=1j2=1 Ja=1
Posons, M = max{Hf(ﬁ), gz),..., e, )H [1;d] et j; € [1;m;]}, alorson a :
\@ d) ) (2 d
OO < 303 DAL AL A (e, 2, e)
= 1]2 1 Ja=1 F
(2) (d)
ZZ Z ‘)\Jl ‘Ah ‘/\]d Hf< 710 Cja ""’ejd>HF
= 1]2 1 Ja=1
= 132 1 Ja=1
f
Jj1=1j2=1 Ja=1

‘(1)

1
<M -y lzall )

=llwall)

Et puisque pour tout i € [1,d|, F; est de dimension finie, alors toute les normes sur F; sont

équivalentes. Donc,
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(Vi e [1,d]), Ba; > 0),(Yy € E): [yl < aillyll

Par suite,

Moy ...og. ||zl - ||zl

1 (Ol

<
S a - flall,

Avec v = (M +1).aq ... (> 0).
Ainsi f est continue.



Chapitre 2

Applications Différentielles

Exercice 1

Etudier la différentiabilité de f + E — F etcalculer sa différentielle éventuelle, dans chacun des cas
suivants :

L fi(X) = X5 E = F = My(K).

2. f(eX) = tr(X?’)XE F =M, (K).

3. [3(P) =P — P} E=R,[X],F =R, [X].

4. fo(x) = <A(L’ x) + (x,b) + a'; F espace préhilbertien réel, F =R, (A € L(E),b€ E,a € R).
5. fs(z) = ||z||; E espace préhilbertien réel, ' = R

Solution :

1. Soit X € Fet H € Fona

filA+ H)— f(A)=(A+H)> - A* = A°H + AHA+ HA*> + HAH + H*A + H*.
On considere I’applcation ¢ : E — F telle que ¢(H) = A’H + AHA+ HA? + HAH.
L’application ¢ est linéiare : évident.

Donc ¢ € L(F) puisque E est de dimension finie.
D’ autre part,

filA+ H) — fi(A) — ¢(H) = HAH + H*A+ H> = H (AH + HA+ H?) = o(||H|)).

Donc f; est différentiable en tout A € F et sa différentielle est D f, : £ — L(FE) telle que

Dfi(A)(h) = A*H + AHA+ HA*> + HAH
pourtout Ac FetH € E.

15
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Remarque :

Si f(X) = X? (p € N¥), f est différentiable et sa différentielle est donnée par la formule suivante :

p—1
FX)-H=> X" H. X7

2. fo(X)=tr (X3) X; E =F = M,(K).

On sait que I’application X — tr(X) est linéaire cntinue, donc elle est différentiable sur F.

g: E—FE
X tr(X3?).
applications différentiables f; ettr etonapourtout X € Fet H € I

Ceci implique que I’application est différentiable ; comme composée de deux

Dg(X)(H) = Dtr (f1(X)) Dfi(X)(H) = Dtr(X) (A’H + AHA+ HA* + HAH)
=tr (A°H + AHA+ HA?* + HAH)

= 3tr (A°H)
, . .. 01: E—Kx xFE O KXx XE—FE
D’une part, on considere les applications X — (9(X), X). et (A X) = AX.

L application ¢, est différentiable car ses composantes sont différentiables et on pour tout X € FE et
HekFE

Déy(X)(H) = (Dg(X)(H), H) = (3t (A’H) , H)

L application ¢, est différentiable ( car ¢, est bilinéaire continue). ET on a

D¢2()‘7X)(,U7Y) = ¢2()"Y) + ¢2(M7X) =AU +pX

Et par suite fo = ¢ o ¢ est différentiable (comme composée de deux applications différentiables) et
sa différentielle est donnée par

D fo(X)(H) = Do (¢1(X)) D (X)(H)
= Doy (tr (X?),X) (3tr (A’H) , H)
= tr (X°) H+3tr (A’H) X

pourtout X € Fet H € E.
3. Soit i un polyndme de degré < n. f est différentiable eton a :

f(P+h)—f(P)=(P+h)—(P+h)?*-P +P?
=n —3P*h —3Ph*+ h?

Or h® — 3Ph* = o(]|h||). On a donc

f'(P).h = h' = 3P%h
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4. Ona

flx+h)—flz)=(A(x+h),z+h)+ (x+h,b) +a— (Az,z) — (z,b) — «
= (Ax,x) + (Az, h) + (Ah,x) + (Ah, h) + (x,b) + (h,b) + o — (Az,z) — (x,b) — «
= (Az,h) + (Ah,x) + (h,b) + (Ah, h)

et comme h — (Ax, h) + (Ah, z) + (h,b) est linéaire et (Ah, h) = o(||h]|), donc f est différentiable
et sa différentielle est f'(x).h = (Ax, h) + (Ah,z) + (h,Db).

5. Soit h € E. On sait que la norme est définie via le produit scalaire, ¢’est-a-dire ||z||* = (x, z).
Posons

g(z) = (z, )
Alors,
glx+h)—g(z)=(x+hz+h) — (x,x)

= (z,z) + (x,h) + (h,z) + (h, h) — (z, )
= 2(x, h) + ||A]®

Ainsi, ¢'(z).h = 2(z, h). Comme u — /u est une application dérivable de R? dans R?, la restriction
de f a E\{0} est différentiable et sa différentielle est :

Exercice 2

1. Soit B € L (E,, Es; F') une application bilinéaire continue sur ¥ = F; X Es ou Ey, By et F
des ecpaces de vectoriels normés sur K.
Montrer que B est différentiable en tout point ( x1, x5 ) de E; x E5 et donner sa différentielle
DB (I'l, Ig).

2. Soit GG un espace de Banach. On considere f : 2 +— Fj et g : (2 — E5 deux applications de
classe C™ sur €2 (ou €2 un ouvert de G ). Posons

¢ :Q— F
v = ¢(x) = B(f(x), 9(x))

(a) Montrer que I’application ¢ est de classe C™.

(b) Déterminer D¢(x)(h) pourtout z € Qeth € G.

3. Soient ¢ € L (FEy,..., E,; F) une application multilinéaire continue sur £ = F; X ... X E, ou
Ey, ..., E, et F des ecpaces de vectoriels normés sur K.

Montrer que ¢ est différentiable en tout point et que sa différentielle est donnée par

ng(ﬂfl,...,l'n)'(hl,...,hn) :Z¢(I1,...,Ii_l,hi,l‘i_,_l,...,ﬂfn).
i=1
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Solution :

1. B est différentiable. Pour X = (z1,x9) € Fy X Eyet H = (hy,hy) € Fy X Esona

B(X + H) — B(X) =B (171 + hl,l'g + hg) — B (I’l,ZL‘Q) = B(l’l,hg) + B(hhl'g) + B (hl,hg>

Il est clair que Lapplication L : E; x Ey +— F définie par L (hy, hy) = B (21, he) + B (hy, z2) est
linéaire.

Pour H = (hy, hs) € Ey x E, On considere la norme ||(hy, ho) || = max (|71 g, . |h2|l ). Donc
[hillz, < [[(R1, ho)|| g pour touti = 1, 2.

Puisque B est bilinéaire continue, alors il existe C' > 0 tel que

1B (h1, ho)ll p < C [l g, 172l s,

Donc

IL (hs B2l < C il g, [l + C Ml N2ll, < € (2l + Nl ) 11, Rl
Ceci montre que L est continue.

D’autre part,

B (hy, hy) < C |llg, Ih2ll g, < Cll(ha, ho) I

Donc MHB(X + H) — B(X) — L(H)|| tend vesr 0 lorsque (h1, hy) tend vers (0, 0). Par suite
I’application B est différentiable sur F; x Es et sa différentielle est donnée par

DB : El XEQP—),C(El XEQ,F)
(x1,22) = DB (x1,x2) .

avec DB (x1,x5) (hy, hy) = B (x1, he) + B (hy, z2) pour tout (hy, hy) € Ey X Es.

Remarque : On peut montrer que 1’application D B est linéaire continue, ceci prouve que DB est
différentiable et méme de classe C'°.

2. L’application

Qs By x B
x> (f(2), 9(x)).

est de classe C™ car ses composantes f et g sont de classe C".
Donc ¢ = B o est de classe C™. De plus, pour tout z € Q2 et h € Gona

Do(x)(h) = DB(y(x)) Dy (x)(h)
= DB(f(x),g9(x))(Df(x)(h), Dg(x)(h))
= B(f(x), Dg(x)h) + B(D[f(x)(h), g(x))

3. Soient E = [[ Ei,a = (a1, a2, ...,a,) € Eet B: E — F une application p-linéaire continue.
On définit I’application partielle B; : E; — F par :
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B, (fUz) =B (Gb ey Qi—1, Ty Ay 1,5 - - 7%)

Comme B est linéaire continue, alors B; est continue. En effet,

1Bi (z:)llp = 1B (ax, -, @iy, iy Qi - - ap) |
< k[T lasl Il
JF
<Kl

De plus, B est différentiable pour p = 2 on écrit B (a; + h,as + k) — B (a1, a2) =

(B (a1,a2) + B(ay, k) + B (h,a2) + B(h,k)) — B (a1,a2) = B (a1, k) + B (h,az2) + B(h, k). Et on
prend e(h, k) = % on obtient donc B’ (ay,az) - (h, k) = B (a1, k) + B (h,az).

Le cas p > 3 se traite de la méme facon. (car elle est p-linéaire est continue) et sa différentielle au

point a = (ay, ..., a,)est:

B/(a)'(hl,hg,...,hp) :B(hl,ag,...,ap)+B(a1,h2,a3,...,ap)—i—B(al,aQ,...,hp)

ainsi pour tout ¢ € {1,2,...,p}ona:
0B
O (CL) : hz =B ((],1, sy i1, hi) Qig1y .- - 7ap)
K2
Il suffit donc de montrer que % (@) est continue au point a.
0B
‘ I (a) - hi|| = IB (a1, .- ai—1, hiy @ia, - )|
1
< |IBIl - 1l T llasll
J#
Donc, %(a) est continue sur £; pour tout 7. Par ailleurs, a étant arbitraire dans F, alors les dérivées

partielles sont continues sur F, d’ou B est de classe C L

Exercice 3

Soit ( E/, < . >) un espace préhilbertien réel. On consideére la norme définie sur E par ||z|| = /(z.z)
pour tout x € E.

1. Soit u € L(FE). On considere I’application f : £ — R, définie par

flz) =< z,u(z) >

Montrer que f est différentiable et donner sa différentielle.
2. Etudier la diférentiablité de v : F > 2 — (2, u(x))x € E.
3. Soit f : R — E une application différentiable qui ne s’annule pas.

Montrer que la fonction F' : R — R, définie par F'(t) = || f(t)]|, est dérivable et donnée sa dérivée.
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Solution :

(1) Montrons que f est différentiable.

1. Evs EXE

On considere les applications
PP T gy — (2) = (,u(z))

et ¢o: ExXFE—R

= o1(z) = (z,u(x)). et (x,y) — do(z,y) =< 2,y > .

L application ¢, est différentiable sur F car ses composantes x — x et x — u(x) sont
différentiables ;.
Etona

D¢y (x)(h) = (h,u(h)) pourtout z € Eeth € E.

L’application ¢, est bilinéaire continue d’apres 1’inégalita de Cauchy Schxartz donc elle est
différentiable sur &/ X E et on a

D¢, y) (h,k) =< x,k >+ < h,y > pour tout (z,y) € E*et (h, k) € E x E.

Puisque f = ¢, o ¢, alors elle est différentiable sur £ et on pour toutx € Feth € E

Df(x)(h) = Doz (é1(x)) © Ddr(x)(h) = Doo(x, u(x))(h, u(h)) =< z,u(h) > + < h,u(h) > .
(2) La différentiabilité de .
On considere les applications ¢ : Kx E+—FE et g¢g: E—KxFE
(A z) =X, el xz— (f(z), ).

Il est clair que g; est bilinéaire continnue donc elle est différentiable et sa différentielle est donnée par

Dgl()\vx>(avy) = gl<)‘7x) + gl(auy) = \r + ay.

D’autre part 1’application g, est différeltaible car ses composante, x — f(x) et x — x, sont
différentaibles et on a pour toutz € Eeth € F

Dga(z)(h) = (Df(x)(h), k) = (< @, u(h) > + < h,u(h) >, k).

Puisque ¢ = g1 o g, alors 1) est différentiable sur F et sa différentielle est donnée pour tout x € E et
h € E par

Dip(x)(h) = Dgi (g2(x)) o Dga(x)(h)
= Dg(f(x),x)(< z,u(h) >+ < h,u(h) >, h)
= f(x)h + (< z,u(h) > + < h,u(h) >)x
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(3) Remarquons que Vz € RF(z) = || f(z)|| = /< f(z), f(z) >. Donc on peut décomposer F de la
facon suivante /' = 1)y o ¢y ol

Y1 R—=R t—R
< f(z), f(z) > et t— V.

Yy est différentiable sur R car c’est la composée de deux applications différentiables :

Y ="Lly0lily :x— (f(x), f(x)) différentiable car ses composantes le sont et

Dl (z)(h) = (hf'(z), hf'(x)), b2 : (u,v) —< u,v > différentiable car bilinéaire continue et
Dly(u,v)(u; k) =< u,h >+ < h,v >Etonapourtoutx € Reth € R

Dipi(x)(h) = Dty (¢1(x)) o Dly(x)(h)
=< f(x),hf'(z) >=< hf'(z), f(x) >
=2< f(x),hf'(x) >

D’autre part 1’application 1), est différentiable sur |0, +oc [ et Dy (z)(h) = ﬁi pour tout
z € 0,+00[ et h € R. Puisque f ne s’annule pas, alors 1;(R) C] 0,400 [. Donc F' = 15 0 1y est
différentiable sur R et pour tout x € Reth € Rona

DF(z)(h) = Db (¢1(x)) © Dby () (h)
= Dip(< f(x), f(2) >)2 < f(x), hf'(x) >
_2< f(x),hf(
2y/< f(x), ()
_ < [f(), hf'(x) >
IF@I

x) >
>

Exercice 4

Soient £ = C([0,1],R) muni de la norme ||.||« et g : R — R une application de classe C* fixée.
Etudier la différentiabilité de ’application ® : E — E définie par :

vreBvel, o= g(f(a)de

Coerrection :

Soit f € Fetu € E.Pourtoutt € [0,1] ona

(@(f +u) — D(F))(t) = / o(f + u)(x) — g(f)(x)dz = / 9(F () + u(@)) (x) — g(f(2))dz
D’apres T.A.F, appliqué a la fonction g entre f(z) + u(x) et f(z), il existe (x) € [0, 1] tel que

9(f (@) + u(x))(x) — g(f(2)) = u(x)g'(f(z) + O(x)u(z))
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Donc

(B(f +u) — B(f)(t) = / §(F(x) + 0(x)u())u(z)ds

v f:ﬁ(u) tel que yy(u)(t) = fot g (f(x))u(x)dz. 1 est clair

que v5 est linéaire (provient de la linéarité de I’intégrale).
¢ est continue. En effet pour tout w € £ on a

On considere I’application

[0 (u) = sup [¢hy(u)(?)]

te(0,1]

= sup
te(0,1]

< / 10/ (f(@))u(z)| da

< lg"o fII - llull

/0 ¢ (f(@))u(x)dx

Ceci montre qui 1) est continue.
Rappelons qu’il s’agit de montrer que

Ve>0 3n>0lull <n=Ilo(f +u) = o(f)vr(w)|l <ellul.

On peut imposer 2 u la condition ||u|| < 1; ainsi, lorsque = € [0, 1], f(z) + 0(z)u(x) et f(x)
appartiennent a I'intervalle [—|| f|| — 1, || f]| + 1]

Puisque g est de classe ¢!, alors ¢’ est uniformement continue sur 'intervalle [ —||f|| — 1, || f|| + 1]
qui est compact.

(c’est-a-dire Ve > 03a > O tel que ||z — y|| < a = ||¢'(z) — ¢'(v)|| < &.)

Donc Ve > 03a > 0 tel que pour tout ||u|| < « on ait

Vo € [0, 1)|f(z) + 6(@)u(z) — F(@)] = B@)u(z)| < Jul < o =

19/(f (@) + B@)u(z)) — ¢'(f(z))] <.

Ainsi

(O +w) = ¢(u) = (W)t (w)) ()] < /Ot l9'(f () + 0(x)u(x)) — g'(f(x)]  [u(z)|dx

< ellull

Par conséquent

[o(f +u) = d(u) = dy(u)]| < ellull

Ceci montre que ¢ est différentiable et sa différentielle est donnée par
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Exercice 5

Soit £ un espace de Banach. On fixe un isomorphisme « de F sur lui méme (u € I som (F) ) et on
considere I"application f : L(E) — L(F) définie par f(v) =2v —vowuow.

1. Montrer que f est de classe C! et calculer sa différentielle. Que valent f (u™') et Df (u™!)?

2. Montrer qu’il existe o > 0 tel que, pour tout u € L(F),

N | —

[v—u || <a=IDf(W)Il <

3. On fixe vg € L(E) tel que |lvg — u™ || < a, et I’on définit par récurrence la suite v,1 = f (v,)
pour tout p € N.
Montrer que, pour tout  p € N, [ju, — u™ ]| < a.
En déduire que la suite (v,),, converge vers u~! dans L(E).

Solution :

(1) L’application f est de classe C"*

On considere les applications suivante

¢1: L(E)x L(E)w— L(E) et ¢ L(E) — L(E) x L(E).
(z,y) = zouoy. x— (z,x).

¢, est de classe C'! : ses composantes le sont.
¢ est de classe C'! car ¢’est une application bilinéaire continue, et pour tout (z,y) € L(E) x L(E) et
(h,k) € L(E) x L(E),

Doy, y)(h, k) = da(x, k) + ¢p2(h,y) =xouok+houoy.
Donc I’application composée ¢ = ¢, o ¢, est de classe C* et sa différentielle est donnée par

Do(x)(h) = Doy (¢a(x)) 0 Dpo(x)(h) = Dy (x,x)(h,h) =xouoh+hououz.

Par conséquent f est de classe C'' comme différence de deux apllications de classe C! : 21d.(E) :
x — x et I"application ¢. Pour tout v € L(E) et h € L(E)

Df(v)(h) =2h—vouoh—houow.
Par définition f (u™') = u! et d’apres la formule précédente D f (u™') = 0.

(2) Puisque Df (u™!) = 0 et D f est continue, alors il existe une boule fermé B de centre u ™! telle
que

1
IDf(v)| < 5 pour toutv € B
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C’est-a-dire il existe a > 0; pour tout v € L(E)

o —u'|| <a=|Df(v)] <

N | —

(3) On pose B = B (u™!, a) la boule de centre u~! et rayon «. Puisque f est différentiable sur B et
Vv € B=||Df(v)| < i, le T.AF implique que

vayeB(ua) [If@) = f@) < 5w —yl.
En particulier
e B(uta) [fw)—u| < g llo—u.
D’autr part,
oo~ < a = s~ < 5 oo~ < a

Donc, par récurrence Vp € N |lv, — u™!|| < a c’est-a-dire v, € B (u™!, ).
En utilisant (*), on montre par récurrence que

1
N A e

Ceci montre que lim,, oo v, = u ™.

Exercice 6

Soient £ un evn, U un ouvert convexe de £, > let f : U — E une application qui satisfait :

Ve,ye U, [[f(x) = f)ll < lle—yll*

Montrer que f est constante.

Solution :

De I’inégaité on obtient :

1f(a+h) = fla)l <[]

donc W < ||h||*' — 0 quand ||| — 0. Alors,

fla+h) = fa)+o(|[Al])

f est différentiable et de différentielle nulle. Comme U est convexe, alors f est constante.
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Exercice 7

Soient X et Y deux R-espaces de Banach. On considere les espaces £ = L(X,Y), FF = L(Y, X) et
2 = I'som(X,Y) I’ensemble des isomorphismes de X sur Y. (On rappelle que €2 est un ouvert de
E.)

On considere I’application f : Q — F' = L(Y, X)) définie par f(u) = u~".

1. On considére ’application ¢ : E x F' — L(X, X') définie par 1)(u,v) = v o u. Montrer que
est une application bilinéaire continue.

2. Supposons que f est différentiable sur €.
(a) Montrer que pour toutu € Qeth € E : ¢(h, f(u)) + ¢ (u, Df(u).h) = 0.
(b) En déduire que Df ((u) -h = —u~tohowu™! pourtoutu € Qetu € E.

3. Montrer que I’application f est différentiable sur {2 et donner sa différentielle.

Solution :

1. % est bilinéaire continue : évident.

2. Supposons que f est différentiable sur €.
(a) Montrer que pour toutu € Qeth € E :(h, f(u)) +¢(u, Df(u).h) = 0.

On considere "application ¢ : Q — L£(X, X) définie par ¢(u) = ¢ (u, f(u)).

Remarquons que ¢(u) = u™! o u = Id pour tout u € 2. Donc ¢ est dfférentiable sur et sa
différentielle est I’application nulle D¢ (u)(h) = 0 pourtout u € Qeth € E.

D’autre part =y o got g : Q +— E x F telle que g(u) = (u, f(u)). Les applications v et g sont
différentiables ( g est différentaible ; car ses composantes sont différentiables et

Dg(u)(h) = (h, Df(u)(h)) pour tout u € Qeth € F).

En calculons la différentielle de ¢ on obtient pour toutu € Qeth € E :

D¢(u)(h) = Dy (g(u)) o Dg(u)(h)
= Dip(u, f(u))(h, D f(u)(h)

D’ou ¢(h, f(u)) + ¢ (u, Df(u).h) = 0.
(b) Soitu € Qeth € E.

D’apres (a), Onay(h, f(u)) + ¢ (u, Df(u).h) = 0 c’est-a-dire D f(u).hou = —f(u) o h. Ceci
implique que D f(u)(h) = —utohou™".
3. Connaissant le "candidat" pour la différentielle de f, a savoir que

Df(u)(h) = —utohou?,

il reste a vérifier que c’est effectivement la différentielle de f en revenant a la définition. Voir le cours
pour le reste de la démonstration.
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Exercice 8

Soeint £ un espace de Banach, Isom(F) le groupe des automorphismes de E (i.e. les
endomorphismes bijectifs de £ qui sont bicontinues) et

U={ueL(F):idg+u € lsom(F)}

1. Montrer que U est un ouvert de L(E).

2. Soit k : U — E I'application définie par k(u) = (idg 4 u) ™" o (idg — u). Montrer que k est
différentiable et donner sa différentielle.

Solution :

1. Dans le cours il est établi que Isom(E) est un ouvert de £(E). On considere 1’application
f: L(F)w— L(E) définie par f(u) = Idg + u.
L application f est continue car || f(u) — f(v)|| = ||u — v|| pour tout u,v € L(FE).
Puisque f~!(Isom(E)) = U, alors U est un ouvert de L(E).

2. Posons B : L(E) x L(E) — L(F) définie par B(u,v) = uov.

Il est clair que B est bilinéaire continue, alors elle est différentiable. De plus, les application f et g
définie par

flu) =idg+u, et glu)=idg—u

sont différentiables puisqu’elles sont deux applications affines dans £(E), et pour tout u, h € L(F)
ona

Df(u)(h)=h et Dg(u)(h) = —h.

On sait que I’application inverse ¢ : u — u~! est différentiable (voir Exercice 2.0.7) et que

Do(u)(h) = —u ' ohou™!

Ainsi I'application ¢ = ¢ o f (¢(u) = (idg + u)_l) est différentiable et que

Di(u)(h) = Di(f(u)) o D (w)(h) = Dt (idg + ) (h) = — (ids +u) " 0 ho (idp + )"

pourtoutu € Ueth € L(E).
Par ailleurs, on a k(u) = B((¢)(u), g(u)) pour tout u € U. D’ou k est différentiable est on a pour tout
ueUethe L(E):

Dk(u)(h) = B(Dy(u)(h), g(u)) + B(v(u), Dg(u)(h))
= B (- (idg + w) " oho (idg4+u)”" ,g(w)) + B ((idg + u) —h)
= — (idg +u) ' oho (idg +u) " o (idg —u) + (idg +u) " o (—h)
= —(idg +u) " oho (idg 4+ u) " o (idp — u) — (idg + 1)~ o h.
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(Voir Exercie 2.0.2 pour la formule de DB).

Exercice 9

On munit R” de la norme euclidienne || - ||2 et on note B = {ey, ... e, } sa base canonique. On
considere une fonction f : R” — R définie et continue sur la boule unité fermé B (0, 1) et telle
qu’elle est de classe C? sur la boule ouverte B(0,1). Onnote S = {z € R™ : |||y = 1} la sphere
unité de R".

1. Justifier le fait que f admet sur B(0, 1) un maximum et un minimum.

2. Supposons que f est constante sur la sphere S. Montrer que 3z € Bf(0, 1) tel que

3. Onnote A(f)=5>"", g%’; le Laplacian de f.
On suppose dans cette question que Yz € B(0, 1)Af(z) > 0 et Jzo € B(0,1) tel que
Vo € Bf(0,1) : f(x) < f (o).
(a) Soiti € {1,...,n}etg : R — R définie par g;(t) = f (x¢ + te;).

Justifier le fait que g; est bien définie dans un voisinage U de t = 0.

Montrer que g; est deux dérivable sur U et que g”;(0) < 0.

(b) Montrer que Af (z) < 0.

(c) En déduire que si Af > 0 sur B(0, 1) alors f atteint son maximumsur B (0, 1) en un point de la
sphere S.
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Chapitre 3

Différentielles d’ordre supérieur-Formules de
Taylor

Exercice 1

Approximations d’intégrales.
Soit f : [a,b] — F de classe C* avec F un espace de Banach et a < b.

1. Méthode des Trapezes : montrer qu’il existe C' > 0 tel que

Fa)de — (b >MH < o 17110 )

2. Méthode du point milieu : montrer que

swrte— -7 (50) | < 5 s 1O 0 -

Solution :

1. Méthode des Trapezes : montrer qu’il existe C' > 0 tel que

[ s = - IO < 0601 6 - 0

On parle de méthode de Trapeze car elle approche 1’intégrale de la fonction f par celle de la fonction
P définie par

Par un calcul simple on atrouve

29
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Donc

/f dx—b—a /f

On note ¢ = “TH’ (le centre de I'intervalle [a, b] ), et on applique la formule de Taylor avec reste
intégrale a la fonction f — P, on obtient

f(x) = P(x) = f(c) = P(c) + D(f = P)(c)(x = ¢) +/0 (1 =t)D*(f = P)(c+t(x — o)) (z — c)*dt

= f(e) = P(c) + (f'(¢c) = P'(¢)) (& — c) + /0 (L =t)f"(c+tx - )z —c)*dt

= f(e) = P(c) + (f'(¢c) = P'(¢)) (x = ¢) + r(x), (1) (D

avec r(x fo t)f"(c+t(x — ¢))(z — c)*dt.
r=a= 0= f(a) = Pla) + (f'(¢c) = P'(c)) (a — ) +r(a) 2
r=b=0=f(b) = P(b) + (f'(c) = P'(c)) (b— ) +r(b) 3)

Remarquons que ¢ = 22 alorsa — ¢+ b — ¢ = 0.
2

(2) + (3) donne 0 = (f(c )—P( )) +r(a) + r(b). donc

D’ou

/ f(x r)dr = / r(x)dr — M(b —a) +/ (f'(¢) = P'(c)) (x — ¢)dx.

Comme f; (f'(c) = P'(c)) (x — ¢)dx = 0, alors

/ f(z) — P(z)dz = /abr(x)dx _ra) ; r®) g

D’autr part, f est de classe C?, si on note M = maxe[, 4 || f”'|| on obtient




(@)l =

[anr

(c+t(x —c))(x —c)’dt

< M(z —c)? /1(1 — t)dt‘
< M(x —c¢)?
- 2
Donc, par I'inégalité triangulaire,
/ r(z)dz — (b— G)MH < / ()| dz + (b— a>||7“(a)|| ; (O
M 9 M )
S/a 7(1‘—0) dex—i—— <7 (b—c)
< % [(b—c)—(a—0)] + %(b—a)
< M(b—a)® (i + %)
< M —a)?
a 6
D’ou
x)dx — (b—a)f(a);f(b)H < M(bG_ a)

Par suite, on a le résultat demandé avec ¢ =

(=N

2. Méthode du point milieu :

f est de classe C? donc, d’apres Taylor Lagrange,

[f(x+h) = f(x)

ot M = maxXee(zatn) || f7(E)]]-
Pour ¢ = “® ona

[f(z+h) = fle) = DS

If(z+h) = fle) = (z =) f' ()] <

ou M = maXeele,z] Hf”(f)H
D’autre part,

o)z —c)| <

1
66[ bl

M
— @)l < S InP

= max || f"(§)[ (b — a)’

+ (a—¢)?)

31
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/abf(a:)—(f(c) +(@—o)f da:—/ fl@)—(b—a)f(c )dx—/ab(x—c)f’(c)dg;

Donc

/f i - - a)f (57| < /nf (=2 f () de

<3 / M(z — ¢)2dz, avec M = max ||f"(€)|

£€la,b]
(CONET)
-6 2 2 '
M (b—a)3
<
— 24 8
< 53 max [ (b — )"

Exercice 2

Soit [ un intervalle ouvert non vide de R, F un espace de Banach et f : [ — F une application de
classe C2. Soit g : I x I — E une application définie par :

o @ = fw) sty
9(z,y) {f,(x) el

1. Soita € I. Soient (x,y) € I? avec x # .
(1-1) On considere I’application ¢ définie par

Montrer que ¢ est différentiable et donner sa différentielle.
(1-2) Montrer que

1
r—y

(f(x) = f(y) = f'(a)|| < sup |[Df(z) = Df(a)ll

z€lz,y[

(1-3) Montrer que g est continue sur /.

2. Montrer que g est de classe C! sur (I x I)\A, ot A := {(x,x) : v € I}

3. En supposant que g est différentiable en (a, a), montrer que Dg(a,a)(h, k) = 2 f”(a) pour tout
(h, k) € R%

4. Démontrer que g est différentiable en ( a, a ).



Solution :
1. Soita € I. Soient (x,y) € I? avec x # .

(1-1) ¢ est différentiable.
f est de classe C? = ¢ est différentiable et que

1 1

Do(z)(h) = (Df(z)(h) = Df(a)(h)) = (Df(z) = Df(a))(h).

r—y r—y

pour tout z € Reth € R.
(1-2) D’apres T.A.F

Do)z =yl

z€lz,y|

Hsb(x) —¢(y) < sup

Donc

1
r—y

(f(x) = f(y)) = ['(a)

z€]z,y(

(1-3) Montrer que g est continue sur /.

considere les applications Vi I®l—E®I

Sur I @ I\A, ou A = {(z,z) : © € I}, I’application g = 1), o 1)y est continue car les deux

applications )5 et 1)1 sont continues sur I @ I\ A
Maintenat, soit (a,a) € A.

1

@ =) - f'(a)

lg(x,y) — g(a,a)| =

Puisque D f est continue, alors g(x, z) — g(a,a) quand (z,y) — (a, a). Ce qui montre que g est

continue sur /
2. Montrer que g est de classe C* sur (I x 1)\ A.

Il est clair que 1, et 1, sont de classe C! sur (I x 1)\ A.
Donc g = 1) 0 ¢; est aussi de classe C! sur (1 x I)\A.

3. Supposons que g est différentiable en ( a, a ). Cherchons un candidat pour Dg(a, a)

< sup [|[Df(z) = Df(a)l-

(z,y) = i(x,y) = (f(2) = f(y),r —y).

< Supzepey(|| Df(2) = Df(a)|

33

Le fait que g est différentiable en ( a, a ) implique que les différentielle partielles g—g (a,a) et g—g (a,a)

existent et on a

9y 9y
D = = — .
gla,a)( k) = S (o, + L a,a)k
D’autre part, on peut décomposer f' comme suite : f* = g o 1) ol
v I II(xy)— Y(x) = (z,z).
Donc on aura
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D' (a)h = Dg(w(a,a)) Dia)h = Dla,a)(ha,h) = 52 (@ a)h + 22 (a, a)h
Comme g est symétrique (g(z,y) = g(y, x)), alors %g(a, a) = g—zg(a, a).
Donc
Df (@)h =222 (0, a)h n
a)h =25"(a,a)h.

Puisque f est deuxx différentiable, f’ est différntiable sur V,, un voisinage de a, de plus ona

f'la+h) = f'(a) + Df'(a)(h) + o(|h]) = f'(a) + hf"(a) + o(|R]).

Donc D f'(a)(h) = hf"(a).
L’éaugtion (1) implque que

dg

1
%(a, a)h = Ehf”(a).

Conclusion :

h+k

Dg(a,a)(h, k) = 5

f"(a).

4. Démontrer que g est différentiable en ( a, a ).

Soit X = (z,y) € I x I et posons A = (a,a);ona

9(X) = g(A) = Dg'(A)(A - X) = gl ) — g(a,0) - L= "(a)
1 / r—at+y—a,,
= ()~ ) - ) - T ),
Notons que
/l f(x+tly —x))dt = ! /1 h'(t)dt, avec h(t) = f(z + t(x — y))
0 r—=YJo
1

— (b))~ h(0)

- (/&)= 1)
et que

Donc
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1

g(l‘,y) - g(a’aa> - Dg(a,a)(m -4,y — (l) = / f,(.l’ + t(y - ZL’)) - f(a’) - (CL’ + t(y - x)f”(a)dt
0

Puisque f’ est différentiable en a, alors

f'(z)=fla)—(z—a)f"(a) = (z —a)p(z —a) avec limp(z—a)=0.
zZ—=a
(il s’agit de montrer que
Ve > 035 > 0][(z,y) — (@,0)]| < n = |g(z,9) — g(a,a) — Dg(a,a)(X — A)|| < )
Soit, donc, € > 03n > 0|z — a| < n = |p(z —a)| < e. (2).
Soit (z,y) € I x I tel que ||(z,y) — (a,a)|| < n(c-a-d |z —a| <net|y —al <n).
donc

Jote = gt0.0) = E= = )| <1 [ty = a0) = 50) (o oty — )|

<

A<x+wy z) — a)p(e + ty — z) — a)dt

1

< [lo+ tly - 2) - alllole + tly - 2) - o)
0

< e(lo —al + |y - )

< c(fo—al +ly— | + |z~ a]

< 2:((o —al + |y — a)

< 2€||(x,y) - ((I,CI,)”

Conclusion : g est différentiable en ( a,a ) et

h+k

Dg(a,a)(h, k) = 5

f// (a)

Exercice 3

Soient £ = C([0, 1], R) muni de la norme ||.||« et ¢ : E — E I’application définie par

Vfe BVre0,1], o(f)(z) = %/0 F2(8)dt

1. Expliquer pouquoi ¢(f) € E pour tout f € E.

2. Montrer que ¢ et différentiable et que sa différentielle, au point f, est donnée par

Vhe EVre 0,1, Dd(f)(h)(x) = / " FO)h()dt

3. Montrer que ¢ est classe C™ et calculer D"¢( f) pour tout f € Eetn > 2.
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Solution :

1. Soit f € E.On a f? est continue sur [0, 1] donc elle admet une primitive F* sur [0, 1]. Ainsi,
pour tout z € [0,1] ona

1
O(f)(2) = 5(F(x) - F(0)
Ceci momtre que ¢(f) € E.
2. Montrons que ¢ et différentiable.
On considere ’aplication L : E — E, définie par L(h fo ) dt pour tout = € [0, 1]. L est

linéaire (évident).

L est continue : en effet soit h € F

IZL(R)|| = Sup,efo.qy L(R)(2) = Supgeppy | [y f(E)h(t)dt] <
Sup,ejoa) Jir LF(IR(E) |t < [ o 1l

Ce qui montre que L est application linéaire continue.
D’autre part, soit f € Eeth € E. Pourtoutz € [0,1] ona

1

(61 + 1) = 9(5) ~ L) = 5 [ (F+ 170~ £0) ~ 25 Oh(0ye

1 X
== | R2(t)dt
5 |

Donc

1
0(F +h) — o) ~ L) < gl
Ce qui montre que ¢ est différentiable en f et que sa différentiable est Do (f)(h) = L(h).
3. ¢ estde classe C'™°.

D’abord ¢ est différentiable et sa différentielle est D¢ : E — L(E)D¢(f)(h) = L(h).
Il est clair que D¢ est linéaire ; provient de linéairité de I’intégrale.

Pour tout f € EFona

D) = sup  [[Do(f)(h)]

heE,||h||=1

= sup sup |[Do(f)(h)

heE,||h||=1 z€[0,1]

F@)n() | dt

< sup sup

h€eE,||h||=1 z€[0,1]

< sup sup

heE,|hl|=1z€[0,1]

< [ fllo

Donc D¢ est linéaire continue. Ceci montre que ¢ est de classe C*™° eton a D(D¢)(f) = D¢ et
D"(D¢) = 0 pour tout n > 3.
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Exercice 4

Soit E un espace de Banach, I =] — a, a[ (avec a > 0 ) un intervalle de R et f une application de /
vers E. Soit y €]0, al.

1. On suppose que f est de classe C? et qu’il existe deux constantes positives A et B telle que,
pourtoutz € I, ||f(x)]| < A, | f'(x)|| < B. Montrer, en utilisant la formule de Taylor, que si
v € [=yyl [f'(2)| < Aly + By.

2. On suppose que f est de classe C* et qu’il existe deux constantes positives M et K telles que,
pour toutn € Nettoutz € I, || f® (z)|| < M(2n)IK".
(a) Pourn € Netz € [—y, y], majorer || f@ ) (z)]|.
(b) Montrer que si y?K < 1, la série Y o (n)) =1 f()(0)(x, - - , ) converge sur [—y,y] eta
pour somme f(z).

Solution :

1. Soit x € [—y, y|. Utilisons la formule de Taylor-Lagrange a 1’ordre 2 entre z et y, puis entre x
et —y. Nous obtenons

17) ~ F(@) ~ F @)y~ o)l < 5B+ (s~ 2)°

et

17(~0) ~ (@) + F @)+ o)l < 5By +2)°

d’ou

N

F) = f(=y) =21 @)W < 1f(y) = f(2) = f(@)y =) + [1f(=y) = f(@) + [(@)(y + )

S%B- ((y—x)2+(y+x)2)
§B~(y2+x2).

Soit encore

2|1 ()W)l < If ) — F(=p)ll + B (y* + 2°) <24+ 2By°.

Mais || f'(z)(y)|| = v ||f'(x)]|| car f'(z) est linéaire et y > 0. On obtient finalement, apres division par
y de I’inégalité obtenue : pour tout = € [—y, y],

1/ (@)l < A/y + By.

(a) Soit n € Net z € [y, y]. Appliquons a la fonction f(™ les résultats de la question 1. Pour tout
x € [~y,y],ona
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| FE ) (@)|| < M(2n)! K™ G +(2n+1)(2n + 2)Ky)

(b) On suppose que y vérifie y? K < 1. Pourn € Netz € [~y,y],ona

e )| < ar (2x)”
ey =Y

2+l n n+1
H f(znm(o)m < M (2K)" + 2M(n + 1) (1K)

Les séries de terme général (y2K)" et (n + 1) (y>K)""" étant convergentes, la série

Z %ﬂ")(o)(x, o)
n=0

est normalement convergente pour z € [—y, y| ; comme elle est a valeurs dans 1’espace complet F,
elle converge dans FE. Il reste 2 montrer qu’elle a pour somme f(x). La formule de Taylor-Lagrange
appliquée a f a I’ordre p donne

M (y*K)" sip=2n—1
k! T M (PK)" +2M(n+ 1) (12K)"T sip=2n

k=0

Hf(m)_ _f(k)(o)($7"' 7$)

Dans tous les cas, le second membre a pour limite O quand p — oo donc, pour tout = € [—y, y],

f) =32 OO )
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Chapitre I

Inversion locale - Fonction implicite

Exercice 1

Soient f et g deux fonctions de classe C! sur R et a valeurs dans R. On suppose que pour tout
z,y €R, f'(z) # g'(y)-
On considere I'application F' : R? — R? définie par F(z,y) = (z + v, f(x) + g(y)).

1. Montrer que F est de classe C* sur R? et déterminer sa différentielle.

2. Montrer que F est un C!-difféomorphisme de R? sur son image.

Solution :
1. Pour (z,y) € R? on peut écrire F'(z,y) = (Fi(z,y), F2(x,y)) ou
Fi: RP—R e F: R*—R
(@y) = z+y. 7 (2,9) = flz)+9()

il est clair que F} et I} sont de classe C! puisque f et g sont de classe C'! et que pour tout (z,y) € R?
et (r,y) € R?ona:

_O0F, OF, B
et
OF: OF. , ,
DFx,y) (h, k) = a—;(x,y)h + a—;(z’,y)k = hf'(z) + kg (v).

Donc F et de classec C'! et pour tout (z,y) € R*et (z,y) € R®ona:

DF(z,y)(h. k) = (h+k,hf'(x) + kg(y)) .
2. F estun C!-difféomorphisme.

39
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Soit (a,b) € R?, montrons que DF(a, b) est isomorphisme.
DF(a,b) : R? — R est une application linéaire. Soit (h, k) € R?

DF(a,b)(h,k) =0<= h+k=0ethf'(a)+ kg ()
<= h = —ketk(¢'(b) — f'(a)) =
— k=0 car(a) # ¢'()
= h =0.

0

Ceci montre que F est injective. et puisque les espaces sont de dimensions finie, alors D F'(a, b) est
un isomorphisme pour tout (a, b) € R2.

Pour démontrer que F est un C!-difféomorphisme, il suffit de montrer que F est injective. En effet
soient (z,y) et (a,b) dans R?

fz,y) = F(a,b) <=z +y=a+bet f(z) + g(y) = f(a) + g(b)
= az—a=b—yetf(z)— fla) =g(b) — g(y).

D’autr part, d’apres T.A.F appliqué a f et g, il existe c; et co tel que

f(@) = fla) = ['(c1) (x — a) et g(b) — g(y) = ¢ (c2) (b= y).

Donc f'(c1) (x —a) = g (c2) (b—y) = ¢ (¢2) (x — ).
Puisque [’ (c1) # ¢'(c), alors x = a et y = b. et par suite I est injective. D’aprés le corollaire de
I’inversion global, F' est un C'-difféomorphisme.

Exercice 2

Montrer que le systeme suivant admet une solution unique dans R?

L.
x:151n(x+y)

2
y=1+ 3 arctan(z — y)

Solution : Rappellons que le théoreme du point fixe dit qu’une application contractante sur un espace
m’etrique complet possede un point fixe.

On considere I'application f : R? — R? définie par f(z,y) = (§sin(z + y),1 + 2 arctan(z — y)).
¢ REP=R

1

. t
(z,y) = sin(z + y). ©

On considere les applications
#: R*—R

2
(x,y) = 1+ 3 arctan(x — y).
11 est clair que ¢, et ¢, sont différentiables sur R? et on pour tout (h, k) € R?

1 1
Doy (x,y)(h, k) = 1 cos(z +y)h + 1 cos(z + y)k

et
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9 1 T S
314 (x—y)? 31+ (r—y)?

Déa(x, y)(h, k) =

Donc f est aussi différentiable (car ses composantes sont diffénrentiable) et on a

Df ) ) = (g ooste 4 )+ 1.5 =),

pour tout (z,y) € R* et (h, k) € R
On considere sur R? la norme ||.||; ¢’est-a-dire ||(h, k)||; = |h| + |k|. Donc pour tout (z,y) € R? et
(h,k) € R*ona

1 2 11 11
<= Slh—k <= <= .
1DF () (s )| < Z0 K+ S b =kl < (1R + ) < (1R, B
Ainsi,
11
< =

Ceci montre que f est contractante et d’aprés le théoréme du point fixe I’équation f(z,y) = (z,y)
admet une soltion unique.

Remarque : Ici on a considéré la norme ||.|;.

Attention, le choix de la norme est important car, par exemple || D f(0,0)(1, —1)||oc = 2

§.

Exercice 3

Soit F un espace de Banach et {2 = I som (F). On considére 1’application ¢ : 2 — L(E) telle que
d(u) = u? — 2u +ut.

1. Montrer que ¢ est classe C! sur . Déterminer sa différentielle et donner D¢ (Id).

2. Montrer qu’il existe un voisinage ouvert Vj de 0, dans L(F), tel que Vv € V} il existe u € 2
telque

wr—2u? —ww+ Idg =0

Solusion :
1. ¢ estclasse C.

Les applications u — u?, u + 2u et u — u~! sont de calsse C'! sur .
Donc ¢ est classe C! sur €2, et pour tout u € Qeth € Eona:

Do(u)(h) = uh +hu—2h —u ' ohou™!
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Pour u = Idg ona D¢ (Idg) (h) = 2h —2h — h = —h donc D¢ (Idg) = —Idg.

2. L’application ¢ est de classe C' et D¢ (Idg) = —Idg est un isomorphisme de L(E) vers L(E).
D’apres le théoreme de I’inversion local, il existe U/ voisinage de idg dans €2, il existe V[, voisinage de
¢ (Idg) = 0dans L(E) tel que ¢ : U — Vj est diffeomorphisme.

Donc Vo € Vj il existe u € Q telque ¢(u) = v c’est-a-dire

u?—2u? —ww+ Idg =0

Exercice 4

On considere 1’équation intégrale suivante, dite équation intégrale de Fredholm de deuxieme espece :

y(t) = F(t) + / K (t, s)y(s)ds @)

ot f € C([0,1],R) et K € C ([0, 1]* R) sont données et y est I'inconnue. On suppose que

1
sup / |K(t,s)|ds < 1
0

0<t<1

Démontrer que (4.1) posséde une unique solution dans C([0, 1], R).

Solution :

Posons £ = C([0,1],R), k = supy<;<; fol |K(t,s)|ds etsoit T : E — F le fonctionnel défini par :

T(a)(t) = £(t) + / K (t, s)y(s)ds

Alors, I’équation (4.1) admet une solution si et seulement si 1’opérateur 7" admet un point fixe. Il est
connu que £ muni de la norme ||.||» est un espace métrique complet. Soient =,y € F, alors

1T(x) = T(Y)lloe = sup [T(z)(t) = T(y)(t)

te[0,1]

|
/01 K(t,s)z(s)ds — /01 K(t, s)y(s)ds

= sup
te[0,1]

et comme |z(s) — y(s)| < ||z — yl| pour tout s € [0, 1]. Alors

1
< <sup / |K<t,s>\ds> o = ol
tef0,1] Jo

sup
t€[0,1]

/01 K(t,s)x(s)ds — /01 K(t, s)y(s)ds

ainsi

IT(z) = T(W)lloo < Kllz = ylloo
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D’apres le théoreme du point fixe de Banach-Picard, 7" admet un unique point fixe, qui est I’'unique
solution de I’équation (4.1).

Exercice 5

Soit £ un espace de Banach. On note [ : © — x I’application identité de F.
On considere ’application ¢ : L(E) — L(FE) définie par ¢(u) = uw o u pour u € L(E).

1. Montrer que ¢ est de classe C! sur L(E) et calculer sa différentielle.

2. Montrer qu’il existe « > 0 tel que pour tout v € L(F) vérifiant ||v — Ig|| < «, I’équation
u o u = v possede une solution dans L(E).

3. On suppose que E = R?, et on considere les éléments u et h de L(E) dont les matrices dans la
base canonique de R? sont respectivement :

-1 0 0 1
Mu:(o 1) et Mh:(o())
3-a. Calculer Do(u).h

3-b. En déduire qu’il n’existe pas de fonction différentiable ¥ : W; — W,,, ol WW; est un voisinage
de Iy et W, voisiange de u dans L£(E), telle que

v(Ig)=u et Pw)o(w)=w pour tout w € W.

Splution :

(1) L’application ¢ est de classe C' sur £(F) comme composée de deux applications :

¢1 : u— (u,u) (qui est de classe C! car ses composantes sont Iz(E) de classe Cl)etde

¢ : (u,v) — u o v qui bilinéiare continue donc de classe C'. D apres la formule de différentiation
des fonctions composées on a :

Do(u)(h) =uoh+hou

pour tout h € L(E) eth € L(E).

(2) D’apres la formule ci-dessus, D¢ (/) (h) = 2h pour tout h € L(E). Donc D¢ (Ig) = 21,(p),
c’est un isomorphisme. Donc d’apres le théoréme d’inversion locale, ¢ est un difféomorphisme local
en I, c’est-a-dire il existe un voisinage U de I et un voisinage V de ¢ (Ig) = Ig tels que, pour tout
v € Vil existe un unique u € U tel que ¢(u) = v.

En prenant € > 0 tel que la boule B (I, ¢), de centre I et de rayon &, soit incluse dans V', on en
déduit que pour tout v € L(F) vérifiant ||[v — Ig|| < e, I’équation u o u = v posséde au moins une
solution dans £(F)) (et en fait une seule dans U).

3-a. Par un calcul simple, on peut voir que le les matrice M,, et M, satisfont M, - M), = M}, - M,.
Donc

Dé(u) - (h) = 0.
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3-b. Supposons, par 1’absurde, qu’il existe une fonction différentiable ¢ : W; — W,,, ot WW; est un
voisinage de I et W, voisiange de u dans £(E), telle que

v(Ig)=u et Pw)o(w)=w pour tout w € W.

C’es-a-dire ¢ 0 1)(w) = w pour tout w € W.
Donc, par la différentiation de 1’application w — ¢ o ¥)(w) — w, on obtient

D¢ (¢ (Ig)) o DY (Ig) (k) = Do(u) o Dy (Ig) (k) =k

pour tout k € L(F). Donc D) (Ig) serait injective. En effet, pour tout k € L(F)

D (I) (k) = 0 = Do (¢ (Ir)) o DY (I) (k) = 0
= k=0

Par conséquent D) (Ig) est bijective car L(F) est de dimension finie.
En choisissant K tel que Dv (Ig) k = h, on en déduit que

Do (u)(h) = k.

Donc k = 0 (car D¢(u)(h) = 0), ainsi h = 0 ce qui est évidemment faux.

Exercice 6

Soit E = C([0, 1]) I’espace des fonctions continues de [0, 1] dans R muni de la norme

/1l = suprepo,y [ (2)]-

On considere I’application /' : & — E définie par :

VfeE VYrel0,1] F(f)(a:):/oxfz(t)dt

1. Montrer que I’application F’ est différentiable et calculer sa différentielle.
2. Montrer que Vf,g € E,ona ||[DF(f)—Df(g)| <2[f —gll

En déduire que I’application F est de classe C'.

3.Montrer que : Vf,g € B: [|[F(f) = F(9)|lo <2||f —9gllwc ouB={f€cE/| fllo<1}la
boule unité ouverte de E.

4.0Onpose ¢ = I + %F, ou [ : x — x I’application identité de F.

(a) Montrer que D¢( f) est inversible pour tout f € B.

(b) Montrer que ¢ est un C'-difféomorphisme de la boule B sur son image.

Solution :

1. Soit f € E.Pourh € Eetx € [0,1]Ona
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(F(F 4+ 1) — F()(a) = / R — (b

9 / FOh(b)dt + / B2 (t)dt
— L) () + F(h)(1)dt

Ou L : E — F est une application définie par L(h =2 fo t)dt pour tout tout h € E et
x € [0,1].
Il est clair que L est linéaire et elle est continue. En effet pour tout 4 € £ on a

T 1
IL(A)I| = sup,efo 1) [ L(R) ()] < 2sup,epoq [y If(OAE)]dE < 2sup,eo fy [FORMD)E < [ f][I2].
Par ailleurs, on a ||F'(h)|| < ||h]|?, de sorte que F/(f + h) — F(f) — L(h) = o(||h|). Et par suite F est
différentiable et sa différentielle est donnée par

DF(f)(h)(x) = 2 / " F ()t

2. Soient f,g € E,ona

IDF(f) = DF(g)ll = sup [[DF(f)(h) = DF(g)(h)]|

heE,||h||=1

= su su ’ — h(t)d
2 <x€[op” [ - apmn tD

<2 sup sup/| () dt
heE,||h||=1 \ z€[0,1

<2 sup |f—glllnl.
heB,||h||=1

<2[[f =4l

On en déduit que D F’ est Lipschitzienne, et par suite continue.

Conclusion F est de classe C'.

3. En posant dans 2g = 0, on ontient || DF(f)|| < 2||f|| pour tout f € E. En particulier, DF(f) < 2
pour tout f € B.

Puisque F’ est différentiable et B est convexe, alors d’apres T.A.F, pour tout f, g € B

IE(f) = Fg)ll < Sup IDER)IIIf =gl <20f -4l

4. Onpose =1+ LF.
(a) Montrer que D¢( f) est inversible pour tout f € B.

D’abdord ¢ est de classe C! en tant que somme de deux applications de classe C'! et

Do(f) = I + LDF(f) pour tout f € E D'ot, aprés 2, | Do(f) — I]| = L DF(f)] < || £ pour
tout f € F.

Ainsi, pour tout f € B, ||[D¢(f) — I|| < 1. Ceci montre que D¢( f) est inversible.

(b) Montrer que ¢ est un C!-difféomorphisme de la boule B sur son image.

Pour f € B, ona D¢(f) est inversible. D’apres le Théoreme d’inversion local, il existe un voisinage
ouvert U de f dans B tel que ¢ est un C''-difféomorphisme. Dol ¢ est un C*-difféomorphisme



46 CHAPITRE 4. INVERSION LOCALE - FONCTION IMPLICITE

local. Pour, montrer que ¢ est un C'! difféomorphisme de la boule ouverte B sur son image ¢(B), il
suffit de montrer que ¢ est injective. En effet, Soient alors f, g € B tels que ¢(f) = ¢(g) c’est-a-dire

F(f)—F(g)=2(f —9).

Donc ||F(f) — F(g)|| = 2||f — ¢||- En utilisant I’inégalité des accroissements finis, on trouve

If = gll = 1F(f) = F(g)l| < sup [[IDFR)[lf = gl

helf.9g]
Supposons que f # g. Alors on trouve sup,,¢(; 4 [|DF(h)|| =
Mais [f, g] étant compact, il existe i € [f, g] tel que | DF (h )|| = 2, ceci est absurde car
|DF(h)|| < ||h|| < 2 pour tout h € B.
D’ou f = g et par suite ¢ est injective.
On en déduit que ¢ est un C''-difféomorphisme de la boule ouverte B sur son image ¢(B).

Exercice 7
On considere le systeme d’équations suivant :

P4y + 224+ =0
242+t =2
r+y+z+t=0

1. Vérifier que le point (0, —1,1,0) est une solution du systeme.

Montrer que I’on peut résoudre ce systeme par rapport a ( x, y, z ) au voisinage de ce point.
2. Calculer la dérivée en 0 de la fonction t — (x(t), y(t); z(t)).

Solution :
1. 1l est facile de vérifier que le point ( 0, —1, 1,0 ) est une solution du systeme ( S).

On considere I’application f : R? x R ~ R3 définie par

fl(z,y,2),t) = (x3—|—y3+z3+t2,x2+y2—|—22+t—2,x+y—|—z+t).

Il est clair que f est de classe C'! et que f((0,—1,1),0) =
La matrice Jacobienne de sa différentielle part1elle frr(M,
M = (z,y, z) est

(0,0,0).
t) par rapport a sa premiére variable

322 3y 322
2 2y 2z
1 1 1

—_ o O
|
MOJ

N W

En particulier, D, f((0,—1,1),0) = , dont le déterminat est 12 # 0.

—_
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D’apres le Théoreme des fonctions implicites, il existe un voisinage I de 0 dans R, un voisinage V' de
(0,—1,1) dans R3 et une application ¢ : [ — V de classe C" tels que

V((2,y,2),t) e VI, f((x,y,2),1) = f((0,=1,1),0) <= (2,9, 2) = (1)

c’est-a-dire Vt € I(x(t),y(t), z(t)) est une solution du systeme (S) ; ou (z(t), y(t), z(t)) = ¥ ().
2. Par le théoreme des fonctions implictes

¢,(t) = _le(o’ _1’ 17 0)_1 : DQf(Ov _1v 17 O>;

0
ou Dyf(0,—1,1,0) = | 1 |.On en déduit que
1
-1
0 3 3 0 -1
WO0)=—[0 —2 2 <[ 1]=[ -1
1 1 1 1 0

Exercice 8

On considere la fonction f : R® — R définie par

flz,y,2) = 2%y +e" + 2
1. Vérifier que f(0,1,—1) =0.

Montrer qu’il existe un voisinage V' de (—1,1) dans R? et une fonction ¢ : V + R de classe C"* tels

que ¢(1,—1) = 0et f(¢(y,2),y,2) = 0 pour tout (y, z) € V.
2. Calculer Do(1, —1).

Solution : (1) Il est facile de vérifier que f(0,1,—1) = 0.
On a %(O, 1,—1) =1 # 0. D’apres le théoreme des fonctions implicites, il existe un voisinage V' de
(—1,1) dans R?, un voisinage I de 0 dans R et une appliaction ¢ : V + I de classe C! tels que
V(z,(y,2)) € I xV  f(z,y,2) = f(0,1,-1) =0 <= z=20¢(y,2),
ou en d’autre termes f(¢(y, z),y, z) = 0 pour tout (y, z) € V. (2) Calculer D¢(1, —1). D’apres
théoreme de la fonction implicite, on a
D¢(1,—1) = — (%(0, 1, —1))_1 D, f(0,1,—1) ou Dy f(0,1,—1) est la différentielle partielle de f
relativement aux coordonnées y et z, i.e elle est représentéepar le vecteur

of
(S ) =)

of =\

9 (0,1,-1)
On en déduit que D¢ (1, —1) : R — R? est I’application linéaire représentée par le vecteur (0, —1)
relativement aux bases canoniques, ¢’est-a-dire D¢ (1, —1)(¢) = (0, —t) pour tout t
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