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Chapitre 1

Tribus et applications mesurables

Table des matieres

Exercice 1

a. Soit X un ensemble et Ay, ..., A, une partition finie de X . Décrire la tribu engendrée par
Aq, ..., A,. Quel est son nombre d’éléments ?

b. Soit X un ensemble et (Ay), une partition de X. Décrire la tribu engendrée par (Ay), -
Montrer qu’elle est équipotente a P(N).

Solution :

a. Considérons 7 = {UjeJAj}JC{I a}- Pour tout j € {1,...,n}, A; € T et toute tribu a laquelle les

-----

A, appartiennent doit contenir 7 ; de plus 7 est une tribu, car stable par réunion, passage au
complémentaire car les A; forment une partition de X et donc

(Ujer4j)" = UjeseA;.
En outre X = U;<j<,A; € T. Comme les A; forment une partition de X, il y a une bijection entre
les sous-ensembles J de {1,...,n} et T. Par suite Card 7 = 2".
b. Considérons 7" = {Ujc 4} ;. Pour tout j € N, A; € T et toute tribu a laquelle les A;

appartiennent doit contenir 7 ; de plus 7 est une tribu, car stable par réunion, passage au
complémentaire car les A; forment une partition de X et donc

(UjesAj)* = UjeseAj.

En outre X = U,enA; € T. Comme les A; forment une partition de X, il y a une bijection entre les
sous-ensembles ./ de N et 7 : I’application

P(N) > J— UjeJAj eT
est surjective par construction de 7. Elle est injective car si J, K sont des parties de N telles que

5



6 CHAPITRE 1. TRIBUS ET APPLICATIONS MESURABLES

UjesAj = Upex A

on obtient pour jy € J, Aj; = Ay N (UjesA4;) = Ajy N (Ugex Ar) = Dsi jo ¢ K. Comme Aj, # 0, il
vient J C K etde méme K C Ji.e. J = K. Par suite, on peut écrire symboliquement que
Card T = 2%, car nous avons démontré que 7 est équipotent 2 P(N).

Exercice 2

Soit X un ensemble et M une tribu dénombrable sur X .

a. Montrer que pour tout x € X, I’intersection A(x) des éléments de M qui contiennent z est encore
¢lément de M.

b. Montrer que pour z, z’ € X, soit A(x) N A (2') = (), soit A(z) = A (2).

c. Montrer que M est la tribu engendrée par une partition dénombrable. En déduire en utilisant
I’exercice précédent que M est finie.

Solution :

a. A(z) est une intersection dénombrable (car M est dénombrable) d’éléments de M, et donc est
élément de M.

b. Considérons x, 2’ des éléments de X. Siz € A(z’), ona A(z) C A(z') et donc

A(x) = A(2') N A(x). Par conséquent si z € A (2') et ' € A(x), on obtient

Alz) = A(@)NA(z) = A(2).

Siz ¢ A(a) alors A (2')° est un élément de M qui contient z et par suite A(x) C A (2/)°, ce qui
implique A(z) N A (2') = () (et le méme résultat si 2’ ¢ A(x)).
c. Considérons I’ensemble

N={BcCX,3zeX,B=A(x)}:

c’est un sous-ensemble de M et il est donc dénombrable. Par ailleurs, d’apres la question b, si

B # B’ € N,ona BN B’ = (). En notant, avec D dénombrable, N" = { By}, on trouve que A" est
une partition de X . En effet, si X # () (si X = (), M = {0} ) aucun By, n’est vide, By N B; = () pour
k#1€DetUyepByr = X carpour x € X, ilexiste k € D, tel que A(z) = By. La tribu M contient
donc la tribu engendrée par \/, qui est non dénombrable si D est infini . Par suite, D est fini ainsi que
la tribu engendrée par \V. De plus si C' € M, on a

car, pour z € C,C D A(x) et x € A(x); par conséquent, C' est réunion, nécessairement
dénombrable, d’éléments de . La tribu M est donc la tribu engendrée par NV, qui est finie.



Exercice 3

Montrer que la tribu des boréliens sur R est engendrée par les intervalles du type [a, +oo[. Méme
question avec les intervalles du type |a, +oo[. M&me question avec les intervalles du type | — oo, a] et
ceux du type | — 00, al.

Solution :

Voir les notes du cours.

Exercice 5

Soit ( X, M ) un espace mesurable et f,, : X — C une suite de fonctions mesurables. Montrer que
I’ensemble

A= {z € X, lasuite (f,(z)),y est convergente }

est élément de M.

Solution :

Corrigé. On a en utilisant le critere de Cauchy,

A={xe X Ve c Qn|0,1],aN,Vn > N,VEk > 0, |foir(x) — fu(z)| < €}
et par suite
A= () U Ouzniso{z € X, [ farr(@) = falz)| < })
e€QN]0,1] LNeN
La mesurabilité des fonctions f,, assure que I’ensemble {z € X, |f,1x(x) — fu(x)| < €} est élément

de M. L’ensemble A est donc une intersection dénombrable de réunion dénombrable d’intersection
dénombrable d’éléments de M : c’est un élément de M.

Exercice 6

Soient ( X, M ) un espace mesurable et A C X. Montrer que I’ensemble M 4 = {M N A} e est
une tribu sur A, rendant I’injection canonique mesurable. Montrer que si en outre

Ae M My={Me M,M C A}.
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Solution :

M 4 est stable par réunion dénombrable, contient A = X N A, et est stable par passage au
complémentaire car, en notant B¢ le complémentaire dans X, pour M € M,

(MNANA=(MUA)NA=MNA.

L’injection canonique ¢ est mesurable car, pour M € M, ona .~ '(M) = M N A. Le dernier point est
trivial.

Exercice 7

Soit (X, M) un espace mesurable et soit (u,), . une suite de fonctions mesurables de X dans R.
Montrer que les ensembles suivants sont mesurables

n—-+0oo

A= {93 € X, lirf U, (z) = +oo} , B={ze X, lasuite (u,(z)),.y estbornée }.

solution
OnaA={z e X,VmeN,IN € N,Vn > N,u,(z) > m}, de sorte qu’en posant

Apm ={z € X, u,(x) > m},

il vient A = Npen (Unen (N>~ Anm)) qui est mesurable car chaque A, ,, I’est. De maniere
analogue,ona B = {z € X,3m € N,Vn € N, |u, ()| < m} = Unen (NnenBnm), avec
Bpm ={z € X, |u,(z)| <m}.

Exercice 8

Soient X, Y deux espaces métriques et soit f : X — Y, une application dont I’ensemble des points
de discontinuité est dénombrable. Montrer que f est mesurable ( X, Y sont munis de leur tribu
borélienne).

solution

Corrigé. Soit D I’ensemble des points de discontinuité de f. L’application F' : X\ D — Y définie par
F(z) = f(z) est continue. Soit V' un ouvert de Y. On a

[V)={zeX fx) e V}={2 € X\D, f(z) e V}U (f (V)N D)
=F'V)u(f(V)NnD)=UnX\D)U(f(V)nD),



ou U est un ouvert de X. Or D est mesurable comme réunion dénombrable de points. Par suite,
U N D¢ est mesurable. De plus, f~!(V) N D est dénombrable, donc mesurable. Finalement, f~!(V)
est mesurable donc f est mesurable.
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Chapitre 2

Mesures positives

Exercice 1

Soit X un ensemble et ;. 1a mesure de comptage définie sur P (X)) par u(A) = Card A si A est fini,
p(A) = +oc sinon. Montrer que (X, P(X), ) est un espace mesuré.

Solution :

Soit (A4;) jeny une suite de parties de X, deux a deux disjointes. Si UjenA; est un ensemble fini, alors
il existe N tel que A; = () pour j > N ; par suite UjenA; = Up<j<nA; et les A; sont finis deux a
deux disjoints.

On obtient bien

12 (UjENAj) = Card (UOSjSNA Z C&I‘d Z C&I‘d Z ,u
0<j<N jeN jeN
Si UjenA; est un ensemble infini, on a y1 (UjenA;) = +o00. Vérifions que 3, 1 (4;) = +oc. Si

'un des ensembles A; est infini, c’est vrai. Si tous les A; sont finis, on ne peut avoir
M =} . yCard (4;) < +oc. En effet, cela impliquerait

Card (UOSjSNAj) = Z Card (A]> S M,

et par conséquent sup,,.y Card (Up<j<nA;) < M. Or, comme I’ensemble U,y A; est infini, la suite

(Card (Uo<j<nAj)), ey N'est pas majorée.

Exercice 2

Soit (X, M) un espace mesurable et (/i ), . une suite de mesures positives définies sur M. Montrer
que Y, /u définit une mesure positive sur M.

11



12 CHAPITRE 2. MESURES POSITIVES

Solution :

En posant, pour A € M, ju(A) = 3", -, p(A), on voit que () = 0. Si (Ay),,o est une suite de M
d’ensembles deux a deux disjoints, on a,

(UnenAn) = ik (UnendAn) = Y (Z . (A > => (Z I (An)> = (A, ged.

keN keN \neN neN \keN neN

Exercice 3
Soit ( X, M, i1 ) un espace mesuré oll i est une mesure positive telle que p(X) = 1. On considére

T={AeM,u(A) =00upu(A) =1}

Montrer que 7 est une tribu sur X.

Solution :

Vérifions les axiomes d’une tribu. - On a u(@) = 0 et u(X) = 1, donc @ et X sont éléments de 7.
-Soit A € T. Alors p (A°) =1 — p(A) € {0,1}, etdonc A° € T.

- Soit (A,,),,cy une suite d’éléments de 7'. Distinguons deux cas :

- ou bien  (A,,) = 0 pour tout n € N. Alors

OO

- ou bien il existe & € N tel que u (Ag) = 1. Alors

(UA>>;L (Ap) =1

et donc 4 (|J,, An) = 1 puisque y est une mesure de probabilité. Dans tous les cas, | J, A, € T

Exercice 4

Soit X un ensemble non vide et M la tribu engendrée par les parties {z} ol z € X.
a. Montrer que A € M si et seulement si A est dénombrable ou bien A est dénombrable.
b. Si X n’est pas dénombrable, on pose pour A € M

pu(A) =0, si Aestdénombrable,
u(A) =1, si An’estpas dénombrable.

Montrer que g est une mesure positive définie sur M.
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solution :

Si A est une partie dénombrable de X, A est réunion dénombrable d’ensembles a un élément et
appartient donc a M. Comme M est aussi stable par passage au complémentaire, on trouve
également que si A¢ est dénombrable, A € M. Considérons

N ={A C X, Aou A° est dénombrable } .
Nous venons de démontrer que N' C M. Par ailleurs \ est stable par passage au complémentaire,
contient X et toutes les parties a un élément. Soit (A,),, . une suite d’éléments de V. Si tous les A,

sont dénombrables, alors U, cyA,, est dénombrable et donc est élément de N S’il existe k € N tel
que Ay, soit non dénombrable, alors Aj est dénombrable et comme

(UnENAn)C - mnENA; - Ai
on obtient que (U,enA,) est dénombrable et donc U,enA, € M. Lensemble A est donc une tribu
qui contient toutes les parties 2 un élément de X . On obtient donc que M C N et par suite M = N.

Ceci acheve la démonstration de (a). On a () = 0; soit (A,,), . une suite d’éléments deux a deux
disjoints de M. Si tous les A,, sont dénombrables, alors U,y A, est dénombrable et

B (Unendn) =0 =" 1 (A,)

neN

S’il existe k£ € N tel que Ay, soit non dénombrable, alors Aj, est dénombrable et U, cnA,, est non
dénombrable. Comme

Az D) UmgkAn

A,, est dénombrable pour n # k et 1 (A,) = 0 pour n # k. Par suite

p(UnenAn) =1=p(A) = p(A) + Y p(A) =D p(An), qed.

neN,n#k neN

Exercice 7

Soit ( X, M, 11 ) un espace mesuré ou p est une mesure positive. Soient f : X — Yetg:Y — Z
deux applications. Montrer que

(g0 f)a(pr) = gu (fu(pr))

Solution :

La mesure image f.(u) est définie sur la tribu A" = {B C Y, f~*(B) € M} dans les notes de cours
par
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La mesure image g. (f.(u)) est définie sur la tribu

T={CcZg(C)eN}={CCZ [ (47(C) eM}={CCZ(g0f)"(C) M}

par

gu (f() (C) = fulp) (971C)) = (f " (¢7"(B))) = ((go f)~HO)) .

Par conséquent les mesures g. (f.(1)) et (g o f).(u) coincident sur la tribu 7.

Exercice 8

On note B la tribu de Borel sur R et on consideére une mesure positive x4 définie sur 3 et finie sur les
compacts. Pour a € R, on définit

Filt) = {p,([a,t[) sit > a,

—u([t,a) sit<a.

Montrer que £, est croissante et continue a gauche.

Solution :

Soient s < ¢ des réels. Pour s > a,ona [a, s [C [a,t[ etdonc F,(s) = u([a,s]) < p(la,t]) = Fu(t).
Pour s <a <t,onaF,(s) =—pu([s,a]) <0< p(la,t]) = F,(t) .Pours <t <a,ona

[t,a[C [s,a[ etdonc F,(s) = —u([s,a]) < —p([t,a]) = Fu(t) . La fonction F, est donc croissante.
Soit t, € R tel que ¢y > a et soit (t,,),,-, une suite croissante de limite ¢o. On a

[aa tO [: UnZl [afa tn]

et en utilisant la proposition , il vient

Fu(to) = ([, tol) = Tim o ([a, 1)) = Tim F, (t)

n—oo n—oo

Soit ty € R tel que ¢y < a et soit (¢,,),,~, une suite croissante de limite ¢;. On a

[to, a[= Np>1 [tn, a]
et en utilisant la proposition
p([tr,al) < p(ftr, a]) < 400 (2.1)
il vient

Fulto) = =t [to,al) = = lim g ([ta,a) = Tim F, (1)

n—o0 n—o0
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Exercice 9

Soit X un ensemble. On appelle mesure extérieure sur X une application

w i P(X) — R,

telle que

(i) p(0) =0,

(i) A C B C X implique u*(A) < p*(B) (monotonie),

(iii) " (UnenAn) < 3 en 15 (An) (sous additivité dénombrable).
Montrer que p* définie sur P(R) par

p*(A) = inf {Z (b; — aj)}

JjEN

ol Ujen] @, bj| parcourt les recouvrements ouverts de A, est une mesure extérieure sur R.

solution

Les propriétés (i) et (i) sont immédiates. Montrons (iii). Soient (A,,),, . une suite de parties de R. On
peut supposer que tous les 1 (A,,) sont finis, sinon (iii) est vérifié trivialement. Soit ¢ > 0. Pour
chaque n € N, on considére une famille dénombrable d’intervalles ouverts bornés (I}}), . telle que

A, C UpenI?, i <Z|Ik|<“ n) + €277t
keN

ol I’on a noté |I}| la longueur de I'intervalle I}’. On a alors

UneNAn C Un,kEN[,I?

et par conséquent

p (Unendn) < Y |1 = Z(ZIL?I) (A +e2 ) =e+ > pr(A

n,keN neN \keN neN neN

ceci pour tout € > (0 ce qui donne le résultat.



16

CHAPITRE 2. MESURES POSITIVES



Chapitre

I’1ntégrale de Lebesgue et applications

Exercice 1

Soit (X, M, 1) un espace mesuré oll 4 est une mesure positive et soit f,, : X — R, une suite de
fonctions mesurables. On suppose que cette suite est croissante et que sup,,cy | x Jndp < +o00.
Montrer que sup,,cy fn(2) est fini 4 — pp. Donner un énoncé analogue pour les séries de fonctions
mesurables a valeurs dans R

Solution :

Corrigé. Le théoréme de Beppo-Levi assure que, avec f = sup,,cy fn

/fduzsup/ Jndp
X neN J X

et par conséquent f est une fonction mesurable de X dans R_ telle que f ~ Jdp < +o0.
Par suite, si N = {z € X, f(z) = +o00}, on a pour tout entier naturel k

k:,u(N)S/Nfdué/deu<+oo

et la suite (kp(N))ken est majorée, ce qui implique 4(IN) = 0. De méme, si (uy),oy €St une suite de
fonctions mesurables de X dans R, telle que

Z/ updp < 400
k>0 /X

alors la série ) , . ux(x) converge pi-presque partout vers une limite finie. ce qui implique

/}{(Zuk> d,u:Z/Xukd,u<:oo

keN k>0

et par conséquent, d’apres ce qui précede, la fonction ), _ ux () est finie presque partout, ged.

17
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Exercice 2

Soit ( X, M, 11 ) un espace mesuré ou p est une mesure positive et f : X — C une fonction
mesurable. a. Montrer que si f € £!(yu), alors

limnu({[f| = n}) = 0.

La réciproque est-elle vraie ?
b. Montrer que si f € L£'(p), alors

1
D5 [ fPdu< oo

n>1 IfI<n
La réciproque est-elle vraie ?
Solution :

(@) On a

0 < n{lf1 = np) = [ tigendn < [ 17z
X X

Ona0 < g, =|fllgssn <I|f] € LM(1) etlim, o | f(2)|1gf15n} (z) = 0 : le théoreme de
convergence dominée (théoreme 1.6.8) assure que lim,, f X | fIL{i=nydpe = O et le résultat. La
réciproque est fausse. La fonction continue positive sur [0, e~!] donnée par g(z) = zIn (z~1) a pour
dérivée In (z71) — 1 et est donc croissante sur [0,e¢"!] de g(0) =0ag(e!)=e'.Ona

e e +o0
/ o / N / du_ _ lim In(lnA) = +oo
o 9(x) o rhn(xt) . uln(u) A-to

Néanmoins, pour n > 1,

{x € [0,e7!] ’%x) > n} ={ze[0,e"],g9(z) <n7'} =10,z

ou x, € [0,e '] est caractérisé par z,, In (z,') = g (x,) = n~!, ce qui implique

nu xE[Oe_l]L>n =N, = L — 0
S gle) T " na,

car z,, — 0. La propriété (a) peut donc étre vérifiée sans que f (ici 1/g ) soit dans £!. (b) Pour
feLt,ona

Z%/h% |f|2d:u:/<Zn_2|f|21{f|<n}> dp
n>1 sn

n>1
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Avec

=D 0@ PYpem@) = Y alf@P=1f@P Y w7

nxl n>max(|f(z)],1) n>max(|f(z)],1)

comme pour N > 1,

on obtient

() si|f(z)] <2

2 1 ) |
0< F(x )<mln<6 max(F @)L 1)_1) |f(z)] S{ (g‘)fl si|f(z)| > 2

Comme pour | f(z)| < 2ona | f(2)* < | f(2)|| ()] < | f ()% < 4] f ()] etpour | f(x)] > 2,

==

N

f@)P @)
[f@)l =1 |f(@) -1

|f(2)] < 2| f(2)]

il vient

0 < F(z) < 4|f(x)]

ce qui donne le résultat. La réciproque est fausse car avec f(x) = §1[1,+00[(:c) (qui n’est pas dans £*

), on a néanmoins
/ |flPdp = / —de =%/6
[f1<n 1

n>1 n>1

Exercice 3

Déterminer la limite des suites ,, = fol IJ:‘W tanh (%) dr, J,= |, Z; Jﬁ dx.

solution

En posant f,(z) = 5

lim f,(z) = v et |fu(x)| < v sup (tanha)

| - 14‘x2a 0 67

. Vo 1 In2
i = [ e = 5 I (L)) = 7
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OnaJ, = fol e (z+ %)71 dz et le lemme de Fatou donne, avec g, (z) = e (z + %)71,

1 1 1
+o0 = / e tdr = / <1im inf gn(x)> dr < lim inf/ gn(z)dx = liminf J,

Exercice 4

Soit ( X, M, 11 ) un espace mesuré ol p est une mesure positive telle que x(X) < +oo. Soit
fn : X — C une suite de fonctions mesurables qui converge simplement vers une fonction f.
a. On définit pour £ > 1, n entiers, I’ensemble

Ey =Ny {z € X, |fp(2) = f(2)] < 1/k}

Montrer que pour tout k¥ > 1, X = U,cnyE¥. b. Montrer que pour tout € > 0, il existe une partie
mesurable A, telle que i (A.) < € et telle que (f,,), o converge uniformément sur X'\ A..
c. Montrer que I’hypothése ;(X) < 400 n’est pas superflue.

solution

Corrigé. (a) Soit x € X. On a lim,, f,,(x) = f(z) et par conséquent, pour tout entier k£ > 1, il existe
un entier n tel que pour tout p > n,

[fo(2) = f(2)] < 1/k

Ceci exprime exactement que = € E¥. Remarquons également que E¥ C E* | et donc (proposition
1.4.2.b) que lim,, 1 (EX) = pu(X). Comme p(X) < +oo, pour tout € > 0 et pour tout k& > 1, il existe
N, tel que

vn > Ny, p(EE) > p(X)—e2™*
On peut supposer par conséquent qu’il existe une suite (ny),~, strictement croissante telle que

p(EE) > p(X)—e2™*

I1 suffit en effet de définir pour cela ny, = k& — 1 4+ max; << /V;. On a alors

Ne<np=k—-1+max N; <k—-1+ max N;<k+ max N, =ng4
1<j<k 1<j<k+1 1<j<k+1

(b) Soit € > 0. Posons F' = Uj>1 F}, avec Fj, = (Ek )c Onapu(Fy) =pX)— ( ) < e27F et
donc pu(F) < >,y p(Fy) < e. Tl vientavec B = F© et donc ju (B°) < e,

B =M1 F = M1 B
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ce qui donne sup,cg | fn(x) — f(2)] < supyepe |fulx) — f(x)] <1/k  sin > ny. Lasuite
g

(sup,ep | fu(r) — f(2)]),,cy converge donc vers 0 .

(c) Considérons la mesure de Lebesgue sur R et la suite convergeant simplement vers O .

Jn(z) = Ljg1(x — n). Si A est une partie mesurable de mesure de Lebesgue < 1/2 et f,, converge
uniformément sur A°, on doit avoir

0 =lim (Sup 10,1(z — n))
o \z€Ae

ce qui implique AN [n,n + 1] = () pour n > N, et donc

AD[n,n+1]= m(A) >1, contredisant I’hypothése.

Exercice 5

Soit ( X, M, 11 ) un espace mesuré oll £ est une mesure positive, montrer que si lim,, f, = f dans L*
et la suite (f,,) converge presque partout vers g, alors g = f presque partout.

solution

En effet, poure > 0,n € N

p{z, [f(2) —g(2)] = €}) < p{z, |f(x) = ful@)| = €/2}) + p ({2, [g(x) = fu(z)| = €/2})

et par suite

p({z, | f(z) = g(z)] = €}) < 27 /X |f = fuldp+ ({2, [9(2) — ful2)] = €/2})

ce qui donne

p{z, [f(z) = g(2)] 2 e}) < limsup p ({2, |9(2) — fal2)] Z €/2}) =0, ged.

Exercice 6

Soit ( X, M, 11 ) un espace mesuré ou p est une mesure positive. On dit que ( X, M, u ) est o-fini s’il
existe une suite (X,), .y d’éléments de M telle que, pour tout n, 1t (X,) < 400 et X = UpenXy.
Montrer que ( X, M, 11 ) est o-fini si et seulement si il existe f € £!(x) telle que pour tout

ze X, f(z) > 0.
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solution

Supposons d’abord que (X, M, i) est o-fini. Considérons

lx, ()
f0) = Y ) 71

neN H

Pour tout z € X, on a f(z) > 0 (car x appartient a I’'un des X, ) et

1 (Xn)
fobon < i <

neN

Réciproquement, s’il existe f € £(u) telle que pour tout x € X, f(z) > 0, on pose pour n € N,

X,={zre X, f(x)>1/(n+1)}.

Ona X = U,enX, car pour x € X, f(z) > 0 et par conséquent f(x) > 1/(n + 1) pour
n > E(1/f(x)). Par ailleurs, comme f est positive et dans £ (1),

,LL(Xn)S/X(n—i—l)fd,u:(n—kl)/xfd,u<+oo

Exercice 7

Soit ( X, M, 11 ) un espace de probabilité. Soient f, g des fonctions mesurables de X a valeurs dans
]0, 400 [ telles que, pour tout z € X, f(z)g(x) > 1. Montrer que [, fdu [, gdu > 1.

solution

Soit ( X, M, 11 ) un espace de probabilité. Soient f, g des fonctions mesurables de X a valeurs dans
]0, 400 [ telles que, pour tout z € X, f(x)g(x) > 1. Montrer que [, fdu [, gdu > 1.

Exercice 9

Soit (X, M, 1) un espace de probabilité. Soit ( f,,),, ., une suite de fonctions mesurables de X a
valeurs réelles. Soit f : X — R une fonction mesurable. On dit que la suite ( f,),, .y converge en
mesure vers f si pour tout € > 0,

limp ({|fo = fI > €}) =0

a. Montrer que si f, tend vers fu — pp, alors f,, tend vers f en mesure.
b.Sip € [1,400] etsi f,, f € LP(u) sont tels que f,, tende vers f dans LP(u), montrer que f,, tend
vers f en mesure.
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solution

Corrigé. (a) Si la suite (f,,) tend vers f presque partout, il existe N € M tel que p(N) =0 et
Vo € N lim, o | fn(x) — f(x)| = 0. Par suite, pour € > 0, le théoréme de convergence dominée
donne

im s ({142 = 11> €)= tim [ 17, popde =0
n n X

car 1z, s> (@) = 0si | fo(x) — f(x)| < e et donc la suite 1|4, _ ¢~ converge simplement vers O
presque partout et est majorée par 1 qui est dans L' car y est une probabilité. (b) Si p < +oo et e > 0,
on a

p{lfo = f1> ) = [ ggppadu< e / fum fPd= e fu— fIl — 0
X X

Si p = +o00, on remarque que, pour o > 0,

gllzoo(uy < @ = pu({lg] > a}) =0

Par suite, si limy, || fn — f|[10(,) =0ete>0,onapourn > N, || fo = f|l 10 (,) < €ctdone

p({lfn—f1>€}) =0

La suite (1 ({|fn — f| > €})),,en est donc stationnaire égale a O pour n > N,. Commentaire. Si

(X, M, p) est un espace mesuré ol y est une mesure positive et si, pour 1 < p < 400, une suite
(fn)nen converge vers f dans LP(y), alors cette suite converge en mesure, comme le montrent les
inégalités précédentes. Il n’est pas nécessaire de supposer pour cela que p(X) < +o00. En revanche
I’hypothése (X)) < 400 est nécessaire au résultat (a), car par exemple la suite f,, définie sur R par
fu(x) = Z1j9,2)(x) tend vers O simplement bien que

p({|fa(@)] >€e}) = p({n* >z >ne}) =n®>—ne — +oo

n—-+o0o

Exercice 10

Pour quelles valeurs de p € [1,400] les fonctions suivantes sont-elles dans L? (R ) ?

ft) =1/(1+1), fo(t) = 1/ (VHL +1)), f5(t) = 1/ (VE(Int)* + 1), fut) = t~/2sin (¢71).

solution

+
o:o\fl(t)!pdt— (H—t) < +00 & 1<p,
oo —+o00 2
0, | ()" dt = m<+00 S 3<p<2
S p
fO |f3(t)| dt = 0 W < +00 = 2§p,
P e
fo |fa(t)[" dt = e < 0 S p <2
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Exercice 11

Soit ( X, M, 11 ) un espace mesuré ol  est une mesure positive. Soit p, p’ €] 1, +o0o[ tels que
1/p+1/p’ = 1. On dit qu’une suite (f,,), - de LP(u) converge faiblement vers f € L”(u) si pour
tout g € L¥ (p),

neN

im [ fugdu= [ o
noJx X

Montrer que la convergence dans L” implique la convergence faible.

solution

Soit (f,,) une suite de L? convergeant vers f dans LP. On a alors, pour tout g € L, en utilisant
I’inégalité de Holder,

—>+00

[ o= Dot < 1= i ol 0
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