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Chapitre 1
Tribus et applications mesurables

Table des matières

Exercice 1

a. Soit X un ensemble et A1, . . . , An une partition finie de X . Décrire la tribu engendrée par
A1, . . . , An. Quel est son nombre d’éléments ?
b. Soit X un ensemble et (Ak)k∈N une partition de X . Décrire la tribu engendrée par (Ak)k∈N.
Montrer qu’elle est équipotente à P(N).

Solution :

a. Considérons T = {∪j∈JAj}J⊂{1,...,n}. Pour tout j ∈ {1, . . . , n}, Aj ∈ T et toute tribu à laquelle les
Aj appartiennent doit contenir T ; de plus T est une tribu, car stable par réunion, passage au
complémentaire car les Aj forment une partition de X et donc

(∪j∈JAj)c = ∪j∈JcAj.

En outre X = ∪1≤j≤nAj ∈ T . Comme les Aj forment une partition de X , il y a une bijection entre
les sous-ensembles J de {1, . . . , n} et T . Par suite Card T = 2n.
b. Considérons T = {∪j∈JAj}J⊂N. Pour tout j ∈ N, Aj ∈ T et toute tribu à laquelle les Aj
appartiennent doit contenir T ; de plus T est une tribu, car stable par réunion, passage au
complémentaire car les Aj forment une partition de X et donc

(∪j∈JAj)c = ∪j∈JcAj.

En outre X = ∪j∈NAj ∈ T . Comme les Aj forment une partition de X , il y a une bijection entre les
sous-ensembles J de N et T : l’application

P(N) 3 J 7→ ∪j∈JAj ∈ T

est surjective par construction de T . Elle est injective car si J,K sont des parties de N telles que
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∪j∈JAj = ∪k∈KAk

on obtient pour j0 ∈ J,Aj0 = Aj0 ∩ (∪j∈JAj) = Aj0 ∩ (∪k∈KAk) = ∅ si j0 /∈ K. Comme Aj0 6= ∅, il
vient J ⊂ K et de même K ⊂ J i.e. J = K. Par suite, on peut écrire symboliquement que
Card T = 2ℵ0 , car nous avons démontré que T est équipotent à P(N).

Exercice 2

Soit X un ensemble etM une tribu dénombrable sur X .
a. Montrer que pour tout x ∈ X , l’intersection A(x) des éléments deM qui contiennent x est encore
élément deM.
b. Montrer que pour x, x′ ∈ X , soit A(x) ∩ A (x′) = ∅, soit A(x) = A (x′).
c. Montrer queM est la tribu engendrée par une partition dénombrable. En déduire en utilisant
l’exercice précédent queM est finie.

Solution :

a. A(x) est une intersection dénombrable (carM est dénombrable) d’éléments deM, et donc est
élément deM.
b. Considérons x, x′ des éléments de X . Si x ∈ A (x′), on a A(x) ⊂ A (x′) et donc
A(x) = A (x′) ∩ A(x). Par conséquent si x ∈ A (x′) et x′ ∈ A(x), on obtient

A(x) = A (x′) ∩ A(x) = A (x′) .

Si x /∈ A (x′) alors A (x′)c est un élément deM qui contient x et par suite A(x) ⊂ A (x′)c, ce qui
implique A(x) ∩ A (x′) = ∅ (et le même résultat si x′ /∈ A(x) ).
c. Considérons l’ensemble

N = {B ⊂ X, ∃x ∈ X,B = A(x)} :

c’est un sous-ensemble deM et il est donc dénombrable. Par ailleurs, d’après la question b, si
B 6= B′ ∈ N , on a B ∩B′ = ∅. En notant, avec D dénombrable,N = {Bk}k∈D, on trouve queN est
une partition de X . En effet, si X 6= ∅ (si X = ∅,M = {∅} ) aucun Bk n’est vide, Bk ∩Bl = ∅ pour
k 6= l ∈ D et ∪k∈DBk = X car pour x ∈ X , il existe k ∈ D, tel que A(x) = Bk. La tribuM contient
donc la tribu engendrée par N , qui est non dénombrable si D est infini . Par suite, D est fini ainsi que
la tribu engendrée par N . De plus si C ∈M, on a

C = ∪x∈CA(x)

car, pour x ∈ C,C ⊃ A(x) et x ∈ A(x) ; par conséquent, C est réunion, nécessairement
dénombrable, d’éléments de N . La tribuM est donc la tribu engendrée par N , qui est finie.
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Exercice 3

Montrer que la tribu des boréliens sur R est engendrée par les intervalles du type [a,+∞[. Même
question avec les intervalles du type ]a,+∞[. Même question avec les intervalles du type ]−∞, a] et
ceux du type ]−∞, a[.

Solution :

Voir les notes du cours.

Exercice 5

Soit ( X,M ) un espace mesurable et fn : X → C une suite de fonctions mesurables. Montrer que
l’ensemble

A =
{
x ∈ X, la suite (fn(x))n∈N est convergente

}
est élément deM.

Solution :

Corrigé. On a en utilisant le critère de Cauchy,

A = {x ∈ X, ∀ε ∈ Q∩]0, 1],∃N, ∀n ≥ N, ∀k ≥ 0, |fn+k(x)− fn(x)| ≤ ε}

et par suite

A =
⋂

ε∈Q∩]0,1]

[⋃
N∈N

(∩n≥N,k≥0 {x ∈ X, |fn+k(x)− fn(x)| ≤ ε})

]
.

La mesurabilité des fonctions fn assure que l’ensemble {x ∈ X, |fn+k(x)− fn(x)| ≤ ε} est élément
deM. L’ensemble A est donc une intersection dénombrable de réunion dénombrable d’intersection
dénombrable d’éléments deM : c’est un élément deM.

Exercice 6

Soient ( X,M ) un espace mesurable et A ⊂ X . Montrer que l’ensembleMA = {M ∩ A}M∈M est
une tribu sur A, rendant l’injection canonique mesurable. Montrer que si en outre
A ∈M,MA = {M ∈M,M ⊂ A}.
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Solution :

MA est stable par réunion dénombrable, contient A = X ∩ A, et est stable par passage au
complémentaire car, en notant Bc le complémentaire dans X , pour M ∈M,

(M ∩ A)c ∩ A = (M c ∪ Ac) ∩ A =M c ∩ A.

L’injection canonique ι est mesurable car, pour M ∈M, on a ι−1(M) =M ∩ A. Le dernier point est
trivial.

Exercice 7

Soit (X,M) un espace mesurable et soit (un)n∈N une suite de fonctions mesurables de X dans R.
Montrer que les ensembles suivants sont mesurables

A =

{
x ∈ X, lim

n→+∞
un(x) = +∞

}
, B =

{
x ∈ X, la suite (un(x))n∈N est bornée

}
.

solution

On a A = {x ∈ X, ∀m ∈ N,∃N ∈ N,∀n ≥ N, un(x) ≥ m}, de sorte qu’en posant

An,m = {x ∈ X, un(x) ≥ m} ,

il vient A = ∩m∈N (∪N∈N (∩n≥NAn,m)) qui est mesurable car chaque An,m l’est. De manière
analogue, on a B = {x ∈ X, ∃m ∈ N,∀n ∈ N, |un(x)| ≤ m} = ∪m∈N (∩n∈NBn,m), avec
Bn,m = {x ∈ X, |un(x)| ≤ m}.

Exercice 8

Soient X, Y deux espaces métriques et soit f : X → Y , une application dont l’ensemble des points
de discontinuité est dénombrable. Montrer que f est mesurable ( X, Y sont munis de leur tribu
borélienne).

solution

Corrigé. Soit D l’ensemble des points de discontinuité de f . L’application F : X\D → Y définie par
F (x) = f(x) est continue. Soit V un ouvert de Y . On a

f−1(V ) = {x ∈ X, f(x) ∈ V } = {x ∈ X\D, f(x) ∈ V } ∪
(
f−1(V ) ∩D

)
= F−1(V ) ∪

(
f−1(V ) ∩D

)
= (U ∩ (X\D)) ∪

(
f−1(V ) ∩D

)
,
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où U est un ouvert de X . Or D est mesurable comme réunion dénombrable de points. Par suite,
U ∩Dc est mesurable. De plus, f−1(V ) ∩D est dénombrable, donc mesurable. Finalement, f−1(V )
est mesurable donc f est mesurable.
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Chapitre 2
Mesures positives

Exercice 1

Soit X un ensemble et µ la mesure de comptage définie sur P(X) par µ(A) = CardA si A est fini,
µ(A) = +∞ sinon. Montrer que (X,P(X), µ) est un espace mesuré.

Solution :

Soit (Aj)j∈N une suite de parties de X , deux à deux disjointes. Si ∪j∈NAj est un ensemble fini, alors
il existe N tel que Aj = ∅ pour j > N ; par suite ∪j∈NAj = ∪0≤j≤NAj et les Aj sont finis deux à
deux disjoints.
On obtient bien

µ (∪j∈NAj) = Card (∪0≤j≤NAj) =
∑

0≤j≤N

Card (Aj) =
∑
j∈N

Card (Aj) =
∑
j∈N

µ (Aj) .

Si ∪j∈NAj est un ensemble infini, on a µ (∪j∈NAj) = +∞. Vérifions que
∑

j∈N µ (Aj) = +∞. Si
l’un des ensembles Aj est infini, c’est vrai. Si tous les Aj sont finis, on ne peut avoir
M =

∑
j∈NCard (Aj) < +∞. En effet, cela impliquerait

Card (∪0≤j≤nAj) =
∑

0≤j≤n

Card (Aj) ≤M,

et par conséquent supn∈N Card (∪0≤j≤nAj) ≤M . Or, comme l’ensemble ∪j∈NAj est infini, la suite
(Card (∪0≤j≤nAj))n∈N n’est pas majorée.

Exercice 2

Soit (X,M) un espace mesurable et (µk)k∈N une suite de mesures positives définies surM. Montrer
que

∑
k≥0 µk définit une mesure positive surM.
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Solution :

En posant, pour A ∈M, µ(A) =
∑

k≥0 µk(A), on voit que µ(∅) = 0. Si (An)n∈N est une suite deM
d’ensembles deux à deux disjoints, on a,

µ (∪n∈NAn) =
∑
k∈N

µk (∪n∈NAn) =
∑
k∈N

(∑
n∈N

µk (An)

)
=
∑
n∈N

(∑
k∈N

µk (An)

)
=
∑
n∈N

µ (An) , qed.

Exercice 3

Soit ( X,M, µ ) un espace mesuré où µ est une mesure positive telle que µ(X) = 1. On considère

T = {A ∈M, µ(A) = 0 ou µ(A) = 1}

Montrer que T est une tribu sur X .

Solution :

Vérifions les axiomes d’une tribu. - On a µ(∅) = 0 et µ(X) = 1, donc ∅ et X sont éléments de T .
- Soit A ∈ T . Alors µ (Ac) = 1− µ(A) ∈ {0, 1}, et donc Ac ∈ T .
- Soit (An)n∈N une suite d’éléments de T . Distinguons deux cas :
- ou bien µ (An) = 0 pour tout n ∈ N. Alors

0 ≤ µ

(⋃
n

An

)
≤
∑
n

µ (An) = 0

- ou bien il existe k ∈ N tel que µ (Ak) = 1. Alors

µ

(⋃
n

An

)
≥ µ (Ak) = 1

et donc µ (
⋃
nAn) = 1 puisque µ est une mesure de probabilité. Dans tous les cas,

⋃
nAn ∈ T .

Exercice 4

Soit X un ensemble non vide etM la tribu engendrée par les parties {x} où x ∈ X .
a. Montrer que A ∈M si et seulement si A est dénombrable ou bien Ac est dénombrable.
b. Si X n’est pas dénombrable, on pose pour A ∈M

µ(A) = 0, si A est dénombrable,
µ(A) = 1, si A n’est pas dénombrable.

Montrer que µ est une mesure positive définie surM.
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solution :

Si A est une partie dénombrable de X,A est réunion dénombrable d’ensembles à un élément et
appartient donc àM. CommeM est aussi stable par passage au complémentaire, on trouve
également que si Ac est dénombrable, A ∈M. Considérons

N = {A ⊂ X,A ou Ac est dénombrable } .

Nous venons de démontrer que N ⊂M. Par ailleurs N est stable par passage au complémentaire,
contient X et toutes les parties à un élément. Soit (An)n∈N une suite d’éléments de N . Si tous les An
sont dénombrables, alors ∪n∈NAn est dénombrable et donc est élément de N . S’il existe k ∈ N tel
que Ak soit non dénombrable, alors Ack est dénombrable et comme

(∪n∈NAn)c = ∩n∈NAcn ⊂ Ack

on obtient que (∪n∈NAn)c est dénombrable et donc ∪n∈NAn ∈ N . L’ensemble N est donc une tribu
qui contient toutes les parties à un élément de X . On obtient donc queM⊂ N et par suiteM = N .
Ceci achève la démonstration de (a). On a µ(∅) = 0 ; soit (An)n∈N une suite d’éléments deux à deux
disjoints deM. Si tous les An sont dénombrables, alors ∪n∈NAn est dénombrable et

µ (∪n∈NAn) = 0 =
∑
n∈N

µ (An)

S’il existe k ∈ N tel que Ak soit non dénombrable, alors Ack est dénombrable et ∪n∈NAn est non
dénombrable. Comme

Ack ⊃ ∪n6=kAn

An est dénombrable pour n 6= k et µ (An) = 0 pour n 6= k. Par suite

µ (∪n∈NAn) = 1 = µ (Ak) = µ (Ak) +
∑

n∈N,n6=k

µ (An) =
∑
n∈N

µ (An) , qed.

Exercice 7

Soit ( X,M, µ ) un espace mesuré où µ est une mesure positive. Soient f : X −→ Y et g : Y −→ Z
deux applications. Montrer que

(g ◦ f)∗(µ) = g∗ (f∗(µ))

Solution :

La mesure image f∗(µ) est définie sur la tribu N = {B ⊂ Y, f−1(B) ∈M} dans les notes de cours
par
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f∗(µ)(B) = µ
(
f−1(B)

)
.

La mesure image g∗ (f∗(µ)) est définie sur la tribu

T =
{
C ⊂ Z, g−1(C) ∈ N

}
=
{
C ⊂ Z, f−1

(
g−1(C)

)
∈M

}
=
{
C ⊂ Z, (g ◦ f)−1(C) ∈M

}
par

g∗ (f∗(µ)) (C) = f∗(µ)
(
g−1(C)

)
= µ

(
f−1

(
g−1(B)

))
= µ

(
(g ◦ f)−1(C)

)
.

Par conséquent les mesures g∗ (f∗(µ)) et (g ◦ f)∗(µ) coïncident sur la tribu T .

Exercice 8

On note B la tribu de Borel sur R et on considère une mesure positive µ définie sur B et finie sur les
compacts. Pour a ∈ R, on définit

Fa(t) =

{
µ([a, t[) si t > a,

−µ([t, a[) si t ≤ a.

Montrer que Fa est croissante et continue à gauche.

Solution :

Soient s < t des réels. Pour s > a, on a [a, s [⊂ [a, t [ et donc Fa(s) = µ([a, s[) ≤ µ ([a, t[) = Fa(t) .
Pour s ≤ a < t, on a Fa(s) = −µ ([s, a[) ≤ 0 ≤ µ ([a, t[) = Fa(t) . Pour s < t ≤ a, on a
[t, a [⊂ [s, a [ et donc Fa(s) = −µ ([s, a[) ≤ −µ ([t, a[) = Fa(t) . La fonction Fa est donc croissante.
Soit t0 ∈ R tel que t0 > a et soit (tn)n≥1 une suite croissante de limite t0. On a

[a, t0 [= ∪n≥1 [a, tn]

et en utilisant la proposition , il vient

Fa (t0) = µ
([
a, t0[) = lim

n→∞
µ ([a, tn]) = lim

n→∞
Fa (tn)

Soit t0 ∈ R tel que t0 ≤ a et soit (tn)n≥1 une suite croissante de limite t0. On a

[t0, a [= ∩n≥1 [tn, a[
et en utilisant la proposition

µ ([t1, a[) ≤ µ ([t1, a]) < +∞ (2.1)

il vient

Fa (t0) = −µ
([
t0, a[) = − lim

n→∞
µ
([
tn, a[) = lim

n→∞
Fa (tn)
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Exercice 9

Soit X un ensemble. On appelle mesure extérieure sur X une application

µ∗ : P(X) −→ R+

telle que
(i) µ(∅) = 0,
(ii) A ⊂ B ⊂ X implique µ∗(A) ≤ µ∗(B) (monotonie),
(iii) µ∗ (∪n∈NAn) ≤

∑
n∈N µ

∗ (An) (sous-additivité dénombrable).
Montrer que µ∗ définie sur P(R) par

µ∗(A) = inf

{∑
j∈N

(bj − aj)

}

où ∪j∈N] aj, bj[ parcourt les recouvrements ouverts de A, est une mesure extérieure sur R.

solution

Les propriétés (i) et (ii) sont immédiates. Montrons (iii). Soient (An)n∈N une suite de parties de R. On
peut supposer que tous les µ∗ (An) sont finis, sinon (iii) est vérifié trivialement. Soit ε > 0. Pour
chaque n ∈ N, on considère une famille dénombrable d’intervalles ouverts bornés (Ink )k∈N telle que

An ⊂ ∪k∈NInk , µ∗ (An) ≤
∑
k∈N

|Ink | < µ∗ (An) + ε2−n−1

où l’on a noté |Ink | la longueur de l’intervalle Ink . On a alors

∪n∈NAn ⊂ ∪n,k∈NInk

et par conséquent

µ∗ (∪n∈NAn) ≤
∑
n,k∈N

|Ink | =
∑
n∈N

(∑
k∈N

|Ink |

)
≤
∑
n∈N

(
µ∗ (An) + ε2−n−1

)
= ε+

∑
n∈N

µ∗ (An) ,

ceci pour tout ε > 0 ce qui donne le résultat.
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Chapitre 3
l’intégrale de Lebesgue et applications

Exercice 1

Soit (X,M, µ) un espace mesuré où µ est une mesure positive et soit fn : X → R+une suite de
fonctions mesurables. On suppose que cette suite est croissante et que supn∈N

∫
X
fndµ < +∞.

Montrer que supn∈N fn(x) est fini µ− pp. Donner un énoncé analogue pour les séries de fonctions
mesurables à valeurs dans R+.

Solution :

Corrigé. Le théorème de Beppo-Levi assure que, avec f = supn∈N fn∫
X

fdµ = sup
n∈N

∫
X

fndµ

et par conséquent f est une fonction mesurable de X dans R+telle que
∫
X
fdµ < +∞.

Par suite, si N = {x ∈ X, f(x) = +∞}, on a pour tout entier naturel k

kµ(N) ≤
∫
N

fdµ ≤
∫
X

fdµ < +∞

et la suite (kµ(N))k∈N est majorée, ce qui implique µ(N) = 0. De même, si (uk)k∈N est une suite de
fonctions mesurables de X dans R+telle que

∑
k≥0

∫
X

ukdµ < +∞

alors la série
∑

k∈N uk(x) converge µ-presque partout vers une limite finie. ce qui implique

∫
X

(∑
k∈N

uk

)
dµ =

∑
k≥0

∫
X

ukdµ <=∞

et par conséquent, d’après ce qui précède, la fonction
∑

k∈N uk(x) est finie presque partout, qed.
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Exercice 2

Soit ( X,M, µ ) un espace mesuré où µ est une mesure positive et f : X → C une fonction
mesurable. a. Montrer que si f ∈ L1(µ), alors

lim
n
nµ({|f | ≥ n}) = 0.

La réciproque est-elle vraie ?
b. Montrer que si f ∈ L1(µ), alors

∑
n≥1

1

n2

∫
|f |≤n
|f |2dµ < +∞

La réciproque est-elle vraie ?

Solution :

(a) On a

0 ≤ nµ({|f | ≥ n}) =
∫
X

n1{|f |≥n}dµ ≤
∫
X

|f |1{|f |≥n}dµ

On a 0 ≤ gn = |f |1{|f |≥n} ≤ |f | ∈ L1(µ) et limn→∞ |f(x)|1{|f |≥n}(x) = 0 : le théorème de
convergence dominée (théorème 1.6.8) assure que limn

∫
X
|f |1{|f |≥n}dµ = 0 et le résultat. La

réciproque est fausse. La fonction continue positive sur [0, e−1] donnée par g(x) = x ln (x−1) a pour
dérivée ln (x−1)− 1 et est donc croissante sur [0, e−1] de g(0) = 0 à g (e−1) = e−1. On a

∫ e−1

0

dx

g(x)
=

∫ e−1

0

dx

x ln (x−1)
=

∫ +∞

e

du

u ln(u)
= lim

A→+∞
ln(lnA) = +∞

Néanmoins, pour n ≥ 1,

{
x ∈

[
0, e−1

]
,

1

g(x)
≥ n

}
=
{
x ∈

[
0, e−1

]
, g(x) ≤ n−1

}
= [0, xn]

où xn ∈ [0, e−1] est caractérisé par xn ln (x−1n ) = g (xn) = n−1, ce qui implique

nµ

({
x ∈

[
0, e−1

]
,

1

g(x)
≥ n

})
= nxn =

1

|lnxn|
−→ 0

car xn −→ 0+. La propriété (a) peut donc être vérifiée sans que f (ici 1/g ) soit dans L1. (b) Pour
f ∈ L1, on a

∑
n≥1

1

n2

∫
|f |≤n
|f |2dµ =

∫ (∑
n≥1

n−2|f |21{|f |≤n}

)
dµ
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Avec

F (x) =
∑
n≥1

n−2|f(x)|21{|f |≤n}(x) =
∑

n≥max(|f(x)|,1)

n−2|f(x)|2 = |f(x)|2
∑

n≥max(|f(x)|,1)

n−2

comme pour N ≥ 1,

∑
n≥N

n−2 ≤ min

(
π2

6
,

1

N − 1

)

on obtient

0 ≤ F (x) ≤ min

(
π2

6
,

1

max(|f(x)|, 1)− 1

)
|f(x)|2 ≤

{
π2

6
|f(x)|2 si |f(x)| ≤ 2
|f(x)|2
|f(x)|−1 si |f(x)| > 2

Comme pour |f(x)| ≤ 2 on a π2

6
|f(x)|2 ≤ π2

6
|f(x)||f(x)| ≤ |f(x)|2π2

6
≤ 4|f(x)| et pour |f(x)| > 2,

|f(x)|2

|f(x)| − 1
=
|f(x)|
|f(x)| − 1

|f(x)| ≤ 2|f(x)|

il vient

0 ≤ F (x) ≤ 4|f(x)|

ce qui donne le résultat. La réciproque est fausse car avec f(x) = 1
x
1[1,+∞[(x) (qui n’est pas dans L1

), on a néanmoins

∑
n≥1

1

n2

∫
|f |≤n
|f |2dµ =

∑
n≥1

1

n2

∫
x≥1

1

x2
dx = π2/6

Exercice 3

Déterminer la limite des suites In =
∫ 1

0
n

1+x2
tanh

(
x
n

)
dx, Jn =

∫ 1

0
ne−x

nx+1
dx.

solution

En posant fn(x) = n
1+x2

tanh
(
x
n

)
, on trouve

lim
n→+∞

fn(x) =
x

1 + x2
et |fn(x)| ≤

x

1 + x2
sup
α>0

(
tanhα

α

)
Le théorème de convergence dominée implique donc

lim
n→+∞

In =

∫ 1

0

x

1 + x2
dx =

1

2

[
ln
(
1 + x2

)]1
0
=

ln 2

2
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On a Jn =
∫ 1

0
e−x

(
x+ 1

n

)−1
dx et le lemme de Fatou donne, avec gn(x) = e−x

(
x+ 1

n

)−1,
+∞ =

∫ 1

0

e−xx−1dx =

∫ 1

0

(
lim inf

n
gn(x)

)
dx ≤ lim inf

n

∫ 1

0

gn(x)dx = lim inf
n

Jn

Exercice 4

Soit ( X,M, µ ) un espace mesuré où µ est une mesure positive telle que µ(X) < +∞. Soit
fn : X → C une suite de fonctions mesurables qui converge simplement vers une fonction f .
a. On définit pour k ≥ 1, n entiers, l’ensemble

Ek
n = ∩p≥n {x ∈ X, |fp(x)− f(x)| ≤ 1/k}

Montrer que pour tout k ≥ 1, X = ∪n∈NEk
n. b. Montrer que pour tout ε > 0, il existe une partie

mesurable Aε telle que µ (Aε) < ε et telle que (fn)n∈N converge uniformément sur X\Aε.
c. Montrer que l’hypothèse µ(X) < +∞ n’est pas superflue.

solution

Corrigé. (a) Soit x ∈ X . On a limm fm(x) = f(x) et par conséquent, pour tout entier k ≥ 1, il existe
un entier n tel que pour tout p ≥ n,

|fp(x)− f(x)| ≤ 1/k

Ceci exprime exactement que x ∈ Ek
n. Remarquons également que Ek

n ⊂ Ek
n+1 et donc (proposition

1.4.2.b) que limn µ
(
Ek
n

)
= µ(X). Comme µ(X) < +∞, pour tout ε > 0 et pour tout k ≥ 1, il existe

Nk tel que

∀n ≥ Nk, µ
(
Ek
n

)
≥ µ(X)− ε2−k

On peut supposer par conséquent qu’il existe une suite (nk)k≥1 strictement croissante telle que

µ
(
Ek
nk

)
≥ µ(X)− ε2−k

Il suffit en effet de définir pour cela nk = k − 1 + max1≤j≤kNj . On a alors

Nk ≤ nk = k − 1 + max
1≤j≤k

Nj ≤ k − 1 + max
1≤j≤k+1

Nj < k + max
1≤j≤k+1

Nj = nk+1

(b) Soit ε > 0. Posons F = ∪k≥1Fk avec Fk =
(
Ek
nk

)c. On a µ (Fk) = µ(X)− µ
(
Ek
nk

)
≤ ε2−k et

donc µ(F ) ≤
∑

k≥1 µ (Fk) ≤ ε. Il vient avec B = F c et donc µ (Bc) ≤ ε,

B = ∩k≥1F c
k = ∩k≥1Ek

nk
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ce qui donne supx∈B |fn(x)− f(x)| ≤ supx∈Ek
nk
|fn(x)− f(x)| ≤ 1/k si n ≥ nk. La suite

(supx∈B |fn(x)− f(x)|)n∈N converge donc vers 0 .
(c) Considérons la mesure de Lebesgue sur R et la suite convergeant simplement vers 0 .
fn(x) = 1[0,1](x− n). Si A est une partie mesurable de mesure de Lebesgue ≤ 1/2 et fn converge
uniformément sur Ac, on doit avoir

0 = lim
n

(
sup
x∈Ac

1[0,1](x− n)
)

ce qui implique Ac ∩ [n, n+ 1] = ∅ pour n ≥ N , et donc

A ⊃ [n, n+ 1] =⇒ m(A) ≥ 1, contredisant l’hypothèse.

Exercice 5

Soit ( X,M, µ ) un espace mesuré où µ est une mesure positive, montrer que si limn fn = f dans L1

et la suite (fn) converge presque partout vers g, alors g = f presque partout.

solution

En effet, pour ε > 0, n ∈ N

µ({x, |f(x)− g(x)| ≥ ε}) ≤ µ ({x, |f(x)− fn(x)| ≥ ε/2}) + µ ({x, |g(x)− fn(x)| ≥ ε/2})

et par suite

µ({x, |f(x)− g(x)| ≥ ε}) ≤ 2ε−1
∫
X

|f − fn| dµ+ µ ({x, |g(x)− fn(x)| ≥ ε/2})

ce qui donne

µ({x, |f(x)− g(x)| ≥ ε}) ≤ lim sup
n

µ ({x, |g(x)− fn(x)| ≥ ε/2}) = 0, qed.

Exercice 6

Soit ( X,M, µ ) un espace mesuré où µ est une mesure positive. On dit que ( X,M, µ ) est σ-fini s’il
existe une suite (Xn)n∈N d’éléments deM telle que, pour tout n, µ (Xn) < +∞ et X = ∪n∈NXn.
Montrer que ( X,M, µ ) est σ-fini si et seulement si il existe f ∈ L1(µ) telle que pour tout
x ∈ X, f(x) > 0.
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solution

Supposons d’abord que (X,M, µ) est σ-fini. Considérons

f(x) =
∑
n∈N

1Xn(x)

2n (µ (Xn) + 1)

Pour tout x ∈ X , on a f(x) > 0 (car x appartient à l’un des Xn ) et

∫
X

|f |dµ ≤
∑
n∈N

µ (Xn)

2n (µ (Xn) + 1)
≤ 2.

Réciproquement, s’il existe f ∈ L1(µ) telle que pour tout x ∈ X, f(x) > 0, on pose pour n ∈ N,

Xn = {x ∈ X, f(x) > 1/(n+ 1)}.

On a X = ∪n∈NXn car pour x ∈ X, f(x) > 0 et par conséquent f(x) > 1/(n+ 1) pour
n ≥ E(1/f(x)). Par ailleurs, comme f est positive et dans L1(µ),

µ (Xn) ≤
∫
X

(n+ 1)fdµ = (n+ 1)

∫
X

fdµ < +∞

Exercice 7

Soit ( X,M, µ ) un espace de probabilité. Soient f, g des fonctions mesurables de X à valeurs dans
]0,+∞ [ telles que, pour tout x ∈ X, f(x)g(x) ≥ 1. Montrer que

∫
X
fdµ

∫
X
gdµ ≥ 1.

solution

Soit ( X,M, µ ) un espace de probabilité. Soient f, g des fonctions mesurables de X à valeurs dans
]0,+∞ [ telles que, pour tout x ∈ X, f(x)g(x) ≥ 1. Montrer que

∫
X
fdµ

∫
X
gdµ ≥ 1.

Exercice 9

Soit (X,M, µ) un espace de probabilité. Soit (fn)n∈N une suite de fonctions mesurables de X à
valeurs réelles. Soit f : X → R une fonction mesurable. On dit que la suite (fn)n∈N converge en
mesure vers f si pour tout ε > 0,

lim
n
µ ({|fn − f | > ε}) = 0

a. Montrer que si fn tend vers fµ− pp, alors fn tend vers f en mesure.
b. Si p ∈ [1,+∞] et si fn, f ∈ Lp(µ) sont tels que fn tende vers f dans Lp(µ), montrer que fn tend
vers f en mesure.
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solution

Corrigé. (a) Si la suite (fn) tend vers f presque partout, il existe N ∈M tel que µ(N) = 0 et
∀x ∈ N c, limn→+∞ |fn(x)− f(x)| = 0. Par suite, pour ε > 0, le théorème de convergence dominée
donne

lim
n
µ ({|fn − f | > ε}) = lim

n

∫
X

1{|fn−f |>ε}dµ = 0

car 1{|fn−f |>ε}(x) = 0 si |fn(x)− f(x)| ≤ ε et donc la suite 1{|fn−f |>ε} converge simplement vers 0
presque partout et est majorée par 1 qui est dans L1 car µ est une probabilité. (b) Si p < +∞ et ε > 0,
on a

µ ({|fn − f | > ε}) =
∫
X

1{|fn−f |>ε}dµ ≤ ε−p
∫
X

|fn − f |p dµ = ε−p ‖fn − f‖pLp −→ 0

Si p = +∞, on remarque que, pour α > 0,

‖g‖L∞(µ) ≤ α =⇒ µ({|g| > α}) = 0

Par suite, si limn ‖fn − f‖L∞(µ) = 0 et ε > 0, on a pour n ≥ Nε, ‖fn − f‖L∞(µ) ≤ ε et donc

µ ({|fn − f | > ε}) = 0

La suite (µ ({|fn − f | > ε}))n∈N est donc stationnaire égale à 0 pour n ≥ Nε. Commentaire. Si
(X,M, µ) est un espace mesuré où µ est une mesure positive et si, pour 1 ≤ p < +∞, une suite
(fn)n∈N converge vers f dans Lp(µ), alors cette suite converge en mesure, comme le montrent les
inégalités précédentes. Il n’est pas nécessaire de supposer pour cela que µ(X) < +∞. En revanche
l’hypothèse µ(X) < +∞ est nécessaire au résultat (a), car par exemple la suite fn définie sur R par
fn(x) =

x
n
1[0,n2](x) tend vers 0 simplement bien que

µ ({|fn(x)| > ε}) = µ
({
n2 ≥ x > nε

})
= n2 − nε −→

n→+∞
+∞

Exercice 10

Pour quelles valeurs de p ∈ [1,+∞] les fonctions suivantes sont-elles dans Lp (R+) ?
f1(t) = 1/(1 + t), f2(t) = 1/(

√
t(1 + t)), f3(t) = 1/

(√
t(ln t)2 + 1

)
, f4(t) = t−1/2 sin (t−1).

solution

∫ +∞
0
|f1(t)|p dt =

∫ +∞
0

dt
(1+t)p

< +∞ ⇔ 1 < p,∫ +∞
0
|f2(t)|p dt =

∫ +∞
0

dt
tp/2(1+t)p

< +∞ ⇔ 2
3
< p < 2∫ +∞

0
|f3(t)|p dt =

∫ +∞
0

dt

(1+
√
t(ln t)2)

p < +∞ ⇔ 2 ≤ p,∫ +∞
0
|f4(t)|p dt =

∫ +∞
0

|sin(t−1)|p
tp/2

< +∞ ⇔ p < 2.
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Exercice 11

Soit ( X,M, µ ) un espace mesuré où µ est une mesure positive. Soit p, p′ ∈] 1,+∞[ tels que
1/p+ 1/p′ = 1. On dit qu’une suite (fn)n∈N de Lp(µ) converge faiblement vers f ∈ Lp(µ) si pour
tout g ∈ Lp′(µ),

lim
n

∫
X

fngdµ =

∫
X

fgdµ

Montrer que la convergence dans Lp implique la convergence faible.

solution

Soit (fn) une suite de Lp convergeant vers f dans Lp. On a alors, pour tout g ∈ Lp′ , en utilisant
l’inégalité de Hölder,

∣∣∣∣∫
X

(fn − f) gdµ
∣∣∣∣ ≤ ‖fn − f‖Lp ‖g‖Lp′ −→

n→+∞
0
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