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Chapitre 1
Ensembles et théorie des cardinaux

1.1 Ensembles

1.1.1 Suites de parties d’un ensemble

Nous allons définir ici les notions de limite, limite supérieure et limite inférieure d’une suite de
parties. Soit ( An ) une suite de parties de E.
Définition 1.1.1. On rappelle que la suite ( An ) est dite croissante (resp. décroissante) lorsque pour
tout entier n,An ⊆ An+1 (resp. An+1 ⊆ An ). Dans ce cas, la limite de la suite ( An ) est définie
naturellement comme la réunion (resp. l’intersection) de tous les An :

lim
n→∞

An :=
⋃
n

An

(
resp.

⋂
n

An

)
.

Par analogie avec le cas réel, on notera cette limite lim ↑ (resp. lim ↓ ) pour faire référence au fait que
la suite ( An ) est croissante et que la limite est donc la réunion (resp. l’intersection) de tous ses
éléments.
Définition 1.1.2. On définit les deux parties de E suivantes :

lim sup
n→∞

An

(
ou lim

n→∞
An

)
:= lim

n→∞
↓
⋃
k≥n

Ak =
⋂
n

⋃
k≥n

Ak,

où la notation lim ↓ fait référence au fait que la suite
(⋃

k≥nAk
)
n

est décroissante, si bien que sa
limite existe toujours (et est l’intersection de tous ses éléments, ce qu’indique la dernière égalité) ;

lim inf
n→∞

An

(
ou lim

n→∞
An

)
:= lim

n→∞
↑
⋂
k≥n

Ak =
⋃
n

⋂
k≥n

Ak,

où la notation lim ↑ fait référence au fait que la suite
(⋂

k≥nAk
)
n

est croissante, si bien que sa limite
existe toujours (et est la réunion de tous ses éléments, ce qu’indique la dernière égalité).
Remarque 1.1.1. Remarque 1.14 On peut aussi caractériser la limite supérieure et la limite
inférieure par les assertions suivantes : pour tout x ∈ E,
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6 CHAPITRE 1. ENSEMBLES ET THÉORIE DES CARDINAUX

x ∈ lim sup
n→∞

An ⇔ ∀n∃k ≥ n, x ∈ Ak

⇔ {n : x ∈ An} est infini.
x ∈ lim inf

n→∞
An ⇔ ∃n∀k ≥ n, x ∈ Ak

⇔ {n : x /∈ An} est fini.

Noter que lim infnAn ⊆ lim supnAn.
Définition 1.1.3. On dit que la suite (An) converge si lim infnAn = lim supnAn. Lorsque c’est le
cas on définit limnAn := lim infnAn = lim supnAn.

Remarque Soit A la limite d’une suite ( An ) qui converge. Alors A est caractérisée par :

{
∀x ∈ A ∃n0 ∀n ≥ n0 x ∈ An
∀x /∈ A ∃n1 ∀n ≥ n1 x /∈ An.

Exercice Montrer les deux égalités suivantes

lim sup
n

cAn = c
(

lim inf
n

An

)
lim inf

n

cAn = c

(
lim sup

n
An

)
.

1.1.2 Fonctions et fonctions indicatrices

Définition 1.1.4. On appelle indicatrice ou fonction indicatrice de la partie A, et l’on note 1A, la
fonction

1A : E −→ {0, 1}

x 7−→
{

0 si x /∈ A
1 si x ∈ A

Noter que 1cA = 1− 1A.
Proposition 1.1.1. Au sens de la convergence simple,

lim
n

1An = 1 lim
limn An

et

limn1An = 1limnAn

Dém. Pour tout x ∈ E,

lim
n

1An(x) = 1⇔ ∀n∃k ≥ n,1Ak
(x) = 1

⇔ ∀n∃k ≥ n, x ∈ Ak
⇔ x ∈ lim

n
An

⇔ 1limn An(x) = 1.
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L’autre assertion se démontre de la même manière, ou alors en se servant de l’assertion précédente :

lim
n

1An = lim
(
1−lcAn

)
= 1− lim

n
1cAn

= 1− 1limncAn
= 1− 1(limnAn) = 1limnAn ,

ce qui achève la démonstration.

Remarque Conséquence de cette proposition : la suite de parties (An) converge ssi la suite de
fonctions ( 1An ) converge simplement (et lorsque c’est le cas, la convergence a lieu vers 1limn An ).

1.1.3 les formules de Hausdorff

Proposition 1.1.2. Pour tous I et J ensembles d’indices non vides, pour toute famille (Ai)i∈I de
parties de E et pour toute famille (Bj)j∈J de parties de F , pour toute fonction f : E −→ F ,

f

(⋃
i

Ai

)
=
⋃
i

f (Ai)

f

(⋂
i

Ai

)
⊆
⋂
i

f (Ai)

avec égalité si f est injective ;

f−1

(⋃
j

Bj

)
=
⋃
j

f−1 (Bj)

f−1

(⋂
j

Bj

)
=
⋂
j

f−1 (Bj)

et pour tout B ⊆ F ,

c
(
f−1(B)

)
= f−1 (cB)

1.2 Cardinaux, équipotence, dénombrabilité

1.2.1 Définitions

Définition 1.2.1. Deux ensembles E et F sont dits équipotents, ou avoir même cardinal, ou encore
même puissance, s’il existe une bijection de l’un sur l’autre. On note alors Card(E) = Card(F ).
Définition 1.2.2. On notera Card(E) ≤ Card(F ) s’il existe une injection de E dans F , c’est-à-dire
si E a même puissance qu’une partie de F . Si de plus E et F n’ont pas même puissance, on notera
Card(E) < Card(F ).
Exemples 1.2.1. Quelques exemples d’équipotences :
- Les ensembles P(E) et {0, 1}E (= ensemble des applications : E −→ {0, 1} ) sont équipotents car
l’application A 7→ 1A est une bijection de l’un sur l’autre ;
- les ensembles N et 2N (entiers pairs) sont équipotents car l’application n 7→ 2n est une bijection de
l’un sur l’autre ;
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- les ensembles N et N× N sont équipotents car on peut bien énumérer de manière injective les
couples d’entiers (par exemple en suivant les points des droites d’équation y = −x+ c, lorsque c
croît dans N ) ;
- par récurrence, N est équipotent avec tous les produits cartésiens du type Np(p ∈ N? ).
Théorème 1.2.1. (théorème de Cantor-Bernstein, admis) Si Card (E1) ≤ Card (E2) et
Card (E2) ≤ Card (E1), alors Card (E1) = Card (E2).

Remarque La relation ≤ est une relation d’ordre. En effet elle est
1. réflexive : il existe une injection de E dans E (l’injection canonique, c’est-à-dire ici l’identité),
donc Card(E) ≤ Card(E) ;
2. antisymétrique, grâce au théorème de Cantor-Bernstein ;
3. transitive : si Card (E1) ≤ Card (E2) et Card (E2) ≤ Card (E3), alors il existe une injection
f1 : E1 −→ E2 et une injection f2 : E2 −→ E3, donc il existe une injection f3 : E1 −→ E3 qui n’est
autre que... f2 ◦ f1, par conséquent Card (E1) ≤ Card (E3).
Proposition 1.2.1. Card(E) < Card(P(E)).

Dém. Soit f : E → P(E). Montrons que f ne peut être surjective (et donc ne peut être bijective). Soit

Ω := {x ∈ E : x /∈ f(x)}.

Montrons que par l’absurde que Ω ne peut avoir d’antécédent par f . Si ∃z ∈ E tel que f(z) = Ω alors
- soit z ∈ Ω alors z /∈ f(z), c’est-à-dire z /∈ Ω ; - soit z /∈ Ω alors z ∈ f(z), c’est-à-dire z ∈ Ω, ce qui
constitue une contradiction. D’autre part il existe clairement une injection de E dans P(E), par
exemple celle qui à x associe {x}.
Définition 1.2.3. On définit les notions d’infini et de dénombrable comme suit :
- E est dit infini s ’il existe x0 ∈ E et une injection de E dans E\ {x0}, et est dit fini sinon ;
- E est dit dénombrable si Card(E) ≤ Card(N) ;
- E est dit infini dénombrable si Card(E) = Card(N) ;
- E est dit (infini) non dénombrable si Card(E) > Card(N) ;
- une partie A de E est dite cofinie si cA est fini.

Remarque L’ensemble N est (bien !) infini car par exemple l’application

f : N −→ N?

n 7−→ n+ 1

est bien une injection.
Définition 1.2.4. Card(N) est souvent noté ℵ0(´ aleph zéro » ).
Proposition 1.2.2. E est infini ssi Card(E) ≥ Card(N)

1.2.2 Cardinaux classiques et propriétés

Proposition 1.2.3. Les ensembles Z,Np (p ∈ N?) et Q sont dénombrables.

Dém. On a déjà vu que Np était équipotent à N. Pour ce qui est de Z, la fonction

f : Z −→ N

n 7−→
{
−2n si n ≤ 0
2n− 1 si n > 0
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est une bijection. Enfin, rappelons que pour tout x ∈ Q?,∃!(p, q) ∈ Z? × N? tel que x = p/q et
p ∧ q = 1. Ainsi la fonction qui à 0 associe (0, 1) et qui est définie sur Q? par

f : Q? −→ Z× N?

p/q 7−→ (p, q)

est une injection de Q dans Z× N?, donc Card(Q) ≤ Card (Z× N?). Or il existe une injection
g : Z→ N, donc l’application qui à ( x, y ) associe ( g(x), y ) est une injection de Z× N? dans N2, ce
qui montre que Card (Z× N?) ≤ Card (N2) = Card(N), donc Card(Q) ≤ Card(N).
Proposition 1.2.4. Toute réunion dénombrable d’ensembles dénombrables est dénombrable.

Dém. Soit E =
⋃
n∈NEn, où pour tout n ∈ N, En est dénombrable. Alors par définition, pour tout

n ∈ N il existe une injection ϕn : En → N. Pour tout x ∈ E on définit alors

N(x) := min {n ≥ 0 : x ∈ En} <∞.

Alors la fonction

φ : E −→ N2

x 7−→
(
N(x), ϕN(x)(x)

)
est une injection car pour tous x, y ∈ E tels que φ(x) = φ(y), on a N(x) = N(y) =: n puis
ϕN(x)(x) = ϕN(y)(y), c’est-à-dire ϕn(x) = ϕn(y), donc x = y, puisque ϕn est injective. Par
conséquent, Card(E) ≤ Card (N2) = Card(N).
Proposition 1.2.5. Tout produit cartésien fini d’ensembles dénombrables est dénombrable.

Dém. Pour i = 1, . . . , n, soit Ei dénombrable et une injection ϕi : Ei → N. Alors la fonction

φ : Πn
i=1Ei −→ Nn

(x1, . . . , xn) 7−→ (ϕ1 (x1) , . . . , ϕn (xn))

est clairement injective donc Card (ΠiEi) ≤ Card (Nn) = Card(N).
Proposition 1.2.6. Tout produit cartésien infini dénombrable d’ensembles non vides (même finis) est
non-dénombrable pourvu qu’une infinité d’entre eux ne soient pas réduits à un singleton.

Dém. Admettons pour simplifier que pour tout i ∈ N,Card (Ei) ≥ 2. Alors pour tout i, il existe une
injection ϕi : {0, 1} → Ei. Donc l’application

φ : {0, 1}N −→ E0 × E1 × · · ·
(x0, x1, . . .) 7−→ (ϕ0 (x0) , ϕ1 (x1) , . . .)

est injective, donc Card (ΠiEi) ≥ Card
(
{0, 1}N

)
= CardP(N) > Card(N).

Théorème 1.2.2. Les ensembles R et P(N) sont équipotents.
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Chapitre 2
Tribus

2.1 Définitions

Soit E un ensemble. On appelle classe de parties de E un sous-ensemble non vide de P(E).
Définition 2.1.1. Définition 1.1.1. Une tribuA sur E est un sous-ensemble non vide de P(E) tel que :
(i) la partie vide appartient à A,
(ii) le complémentaire d’un élément de A est dans A,
(iii) A est stable par réunion dénombrable.

Notons immédiatement quelques propriétés satisfaites par les tribus. Si A est une tribu alors - E ∈ A,

– A est stable par intersection dénombrable,
– A est stable par différence : A,B ∈ A ⇒ A\B ∈ A,
– A est stable par différence symétrique : A,B ∈ A ⇒ A∆B ∈ A.
Exemple 2.1.1. La plus petite tribu de E est A = {∅, E}, tandis que la plus grande est P(E).
Définition 2.1.2. On appelle espace mesurable tout couple ( E,A ) formé par un ensemble E et une
tribu A sur E.
Proposition 2.1.1. L’intersection de tribus sur E est encore une tribu.

Démonstration. Soit (Ai)i∈I une famille de tribus sur E. Notons A = ∩i∈IAi l’intersection de ces
tribus. Alors, l’ensemble vide appartient à chaque tribu Ai et donc à A. Soit A ∈ A. Pour tout
i ∈ I, A ∈ Ai donc Ac ∈ Ai : Ac ∈ A. La réunion dénombrable s’établit de même.
Proposition 2.1.2. (tribu engendrée). Soit E un sous-ensemble de P(E). Il existe une plus petite tribu
(au sens de l’inclusion) contenant tous les éléments de E . Elle est appelée tribu engendrée par E , et
est notée σ(E).

Démonstration. Soit X l’ensemble de toutes les tribusM sur E contenant E . L’ensemble X n’est
pas vide puisqu’il contient la tribu P(E). Posons

A =
⋂
M∈X

M = {A ⊂ E,∀M ∈ X , A ∈M}

Il est clair que E ⊂ A. De plus, A est une tribu comme intersection (quelconque) de tribus et, par
définition, elle est contenue dans toute tribu contenant E .

Remarque. Si A est un sous-ensemble de E, alors

11



12 CHAPITRE 2. TRIBUS

σ({A}) = {∅, A,Ac, E}

Remarque Si A est une tribu sur E, alors σ(A) = A.
Proposition 2.1.3. (image réciproque d’une tribu). Soit E et F deux ensembles, f une application de
E dans F et A une tribu sur F . Alors

f−1(A) =
{
f−1(A), A ∈ A

}
est une tribu sur E, appelée tribu image réciproque de A par f .

Démonstration. La classe f−1(A) contient l’ensemble vide puisque ∅ = f−1(∅). Soit B ∈ f−1(A).
Alors il existe A ∈ A tel que B = f−1(A). Puisque A est une tribu, Ac ∈ A. Enfin, remarquons que
f−1(A)c = f−1 (Ac). La stabilité par réunion dénombrable s’établit de même.
Proposition 2.1.4. Soit f une application de E dans F, E un sous-ensemble de P(F ). Alors

f−1(σ(E)) = σ
(
f−1(E)

)
En d’autres termes, l’image réciproque de la tribu engendrée par E est la tribu engendrée par
l’image réciproque de E .

Démonstration. Comme E ⊂ σ(E), on a f−1(E) ⊂ f−1(σ(E)) qui est une tribu et ainsi σ (f−1(E))
est inclus dans f−1(σ(E)).

Montrons l’inclusion inverse. Notons B l’ensemble des parties B ⊂ F telles que f−1(B) appartienne
à σ (f−1(E)). Alors B est une tribu. De plus, B contient E donc contient σ(E). Il en résulte que
f−1(σ(E)) ⊂ f−1(B). Comme, par définition, f−1(B) ⊂ σ (f−1(E)), on obtient l’inclusion
souhaitée : f−1(σ(E)) ⊂ σ (f−1(E)).
Définition 2.1.3. (tribu induite). Soit B un sous-ensemble de E et A une tribu sur E. On appelle
tribu trace, ou tribu induite, par A sur B la tribu

AB = {A ∩B,A ∈ A}

Définition 2.1.4. (tribu produit). Soit A une tribu sur E et B une tribu sur F . On appelle tribu
produit, et l’on note A⊗ B, la tribu sur E × F engendrée par l’ensemble des parties de E × F qui
s’écrivent sous la forme A×B avec A ∈ A et B ∈ B.

2.2 Tribu borélienne

Rappelons que pour la topologie usuelle de R, un ensemble O de R est ouvert si

∀x ∈ O, ∃a, b ∈ O, x ∈]a, b[⊂ O.

On note O l’ensemble des ouverts de R.
Soit O un ouvert de R. Notons

I =
{

(ρ, r) ∈ Q×Q∗+,
]
ρ− r, rho+ r[⊂ O}

Alors I est dénombrable et
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O =
⋃

(ρ,r)∈I

]ρ− r, ρ+ r[

On voit ainsi que tout ouvert de R peut s’écrire comme réunion dénombrable d’intervalles ouverts (on
peut même se limiter à des intervalles à extrémités rationnelles).
Définition 2.2.1. La tribu σ(O) engendrée par O est appelée la tribu borélienne de R. On la note
B(R). Ses éléments sont appelés les boréliens.

Remarque Même si cela n’est pas évident, on peut montrer que B(R) est strictement inclus dans
P(R) : il existe des parties de R qui ne sont pas boréliennes.
Proposition 2.2.1. Sur R, muni de sa topologie usuelle, la tribu borélienne est engendrée par

1. la classe des intervalles ouverts bornés,

2. la classe des intervalles de la forme ]−∞, a[ avec a ∈ R,

3. la classe des intervalles de la forme ]−∞, a] avec a ∈ R,

Démonstration. Prouvons le point 1 . Notons E la classe des intervalles ouverts bornés. On a
E ⊂ O, donc σ(E) ⊂ σ(O). D’autre part, tout ouvert de O est réunion finie ou dénombrable
d’intervalles ouverts bornés, d’où O ⊂ σ(E) et par suite σ(O) ⊂ σ(E).
Prouvons le point 2. Soit E ′ la classe des intervalles de la forme ]−∞, a [. On a σ (E ′) ⊂ σ(O).
Pour établir l’inclusion inverse, il suffit de montrer que E ⊂ σ (E ′) (puisque la tribu engendrée par E
est la tribu borélienne). Soit ]a, b[∈ E . On a

]a, b[ =]−∞, b[∩]a,+∞[=]−∞, b[∩]−∞, a]c

=]−∞, b [∩ (∩n∈N∗ ]−∞, a+ 1/n[)c ∈ σ (E ′)

Tout intervalle ]a, b [ appartient donc à la tribu engendrée par E ′ et donc σ(E) ⊂ σ (E ′).
Le point 3 s’établit de manière analogue.
Remarque Nous aurons aussi à considérer la droite achevée R = R ∪ {+∞} ∪ {−∞}. Rappelons
que sa topologie est définie par la base d’ouverts formés des intervalles ouverts de la forme
]a, b[]a, ,+∞] et [−∞, b[ avec a, b ∈ R. On démontre de façon analogue que la tribu borélienne de R
est engendrée par les classes {[−∞, a[, a ∈ R} ou {[−∞, a], a ∈ R} par exemple.
Proposition 2.2.2. La tribu borélienne de Rd est égale à la tribu engendrée par la classe des ouverts
de la forme

d∏
i=1

]ai, bi[ avec∞ < ai < bi < +∞

Il existe une notion d’espace topologique abstrait. Rappelons que O ⊂ P(E) est une topologie
(l’ensemble des ouverts) sur E si
(i) ∅ et E appartiennent à O,
(ii) O est stable par intersection finie,
(iii) O est stable par réunion quelconque.
Il est naturel de munir un espace topologique ( E,O ) (où O désigne l’ensemble des ouverts de E)
d’une tribu compatible en un certain sens avec la structure topologique préexistante.
Proposition 2.2.3. Soit ( E,O ) un espace topologique. La tribu σ(O) engendrée par O est appelée
la tribu borélienne de E. On la note B(E). Ses éléments sont appelés les boréliens.
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Chapitre 3
Applications mesurables

3.1 Définitions et critères de mesurabilité

Définition 3.1.1. Soit ( E,A ) et ( F,B ) deux espaces mesurables et f une application de E dans F .
On dit que f est mesurable de ( E,A ) dans ( F,B ) si l’image réciproque par f de tout élément de B
est un élément de A. On dira plus simplement que f est mesurable s’il n’y a pas d’ambiguïté sur les
tribus considérées.

Autrement dit, f est mesurable si f−1(B) ⊂ A. Lorsque E et F sont des espaces topologiques et A et
B désignent leurs tribus boréliennes respectives, une application mesurable est encore appelée
borélienne.
Exemple 3.1.1. Soit (E,A) un espace mesurable. Pour toute partie A de E on note 1A la fonction
indicatrice de l’ensemble A (valant 1 sur A et 0 sur son complémentaire). La fonction 1A est
mesurable de ( E,A ) dans R (muni de sa tribu borélienne) si et seulement si A ∈ A.
Proposition 3.1.1. Soit (E,A) et (F,B) deux espaces mesurables, f une application de E dans F et
E une classe sur F telle que σ(E) = B. Alors f est mesurable si et seulement si l’image réciproque
de tout élément de E appartient à A.

Démonstration. La condition est évidemment nécessaire. Réciproquement, si A contient l’image
réciproque de E , elle contient également la tribu engendrée par l’image réciproque de E qui est encore
l’image réciproque de la tribu engendrée par E , c’est-à-dire l’image réciproque de B par hypothèse.
Corollaire 3.1.1. Soit E et F deux espaces topologiques munis de leurs tribus boréliennes
respectives. Toute fonction continue f de E dans F est mesurable.

Démonstration. Soit OE (resp. OF ) la classe des ouverts de E (resp. de F ). Par définition de la
continuité de f , on a f−1 (OF ) ⊂ OE ⊂ B(E). La tribu borélienne B(E) de E contient donc
σ (f−1 (OF )) = f−1 (σ (OF )) = f−1(B(F )) et f est mesurable.
Corollaire 3.1.2. Soit f une application mesurable de ( E,A ) à valeurs dans R muni de sa tribu
borélienne. Alors f est mesurable si et seulement si l’une des conditions suivantes est vérifiée :
(i) ∀a ∈ R, {x ∈ E, f(x) < a} ∈ A,
(ii) ∀a ∈ R, {x ∈ E, f(x) ≤ a} ∈ A,
(iii) ∀a ∈ R, {x ∈ E, f(x) > a} ∈ A,
(iv) ∀a ∈ R, {x ∈ E, f(x) ≥ a} ∈ A.

Démonstration. En effet, l’une quelconque des classes suivantes de parties de R

]−∞, a[; a ∈ R}; {]−∞, a]; a ∈ R}; {]a,+∞[; a ∈ R}; {[a,+∞[; a ∈ R}

15
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engendre la tribu borélienne de R.

3.2 Propriétés de stabilité

La mesurabilité est stable par composition.
Proposition 3.2.1. Soit (E,A), (F,B), (G, C) trois espaces mesurables, f une application mesurable
de (E,A) dans (F,B) et g une application mesurable de (F,B) dans (G, C). Alors l’application f ◦ g
est mesurable de ( E,A ) dans ( G, C ).
Proposition 3.2.2. Soit (F1,B1) et (F2,B2) deux espaces mesurables et p1 et p2 les projections de
F1 × F2 sur F1 et F2 respectivement. On munit F1 × F2 de la tribu produit B1 ⊗ B2.
(i) les projections p1 et p2 sont mesurables ;
(ii) soit ( E,A ) un espace mesurable et f une application de E dans F1 × F2. Alors f est mesurable
si et seulement si les composées p1 ◦ f : E → F1 et p2 ◦ f : E → F2 sont mesurables.

Démonstration. Prouvons le point (i). Pour tout B1 ∈ B1, on a p−11 (B1) = B1×F2 ∈ B1⊗B2. Donc
p1 est mesurable. On procède de même pour p2.
Prouvons le point (ii). Si f est mesurable, il est clair que p1 ◦ f et p2 ◦ f le sont. Réciproquement,
supposons que p1 ◦ f et p2 ◦ f soient mesurables. Alors, pour tout B1 ∈ B1, l’ensemble
f−1 (B1 × F2) n’est autre que (p1 ◦ f)−1 (B1) qui appartient à A. De même, pour tout B2 ∈ B2, on a
f−1 (F1 ×B2) appartient à A. Il en résulte que

f−1 (B1 ×B2) = f−1 ((B1 × F2) ∩ (F1 ×B2)) = f−1 (B1 × F2) ∩ f−1 (F1 ×B2) ∈ A

Comme B1 ⊗B2 est la tribu engendrée par les parties de la forme B1 ×B2, avec B1 ∈ B1 et B2 ∈ B2,
la proposition 2.1.3 permet de conclure que f est mesurable.
Corollaire 3.2.1. Pour qu’une fonction à valeurs complexes soit mesurable, il faut et il suffit que ses
parties réelle et imaginaire soient mesurables. Si f et g sont des fonctions mesurables de ( E,A )
dans C, alors f + g, fg, |f |, . . . sont mesurables.

Avant d’étudier la stabilité de la notion de mesurabilité par passage à la limite, rappelons quelques
définitions concernant les suites à valeurs dans R.
Définition 3.2.1. Soit (un)n∈N une suite à valeurs dans R. La plus grande (resp. petite) valeur
d’adhérence de la suite (un)n est notée lim supun ( resp lim inf un). Leurs définitions sont données
par

lim supun = inf
n≥0

sup
k≥n

uk et lim inf un = sup
n≥0

inf
k≥n

uk.

Remarque Les limites supérieure et inférieure sont a priori des éléments de R.
Remarque On a toujours lim inf un ≤ lim supn un et la suite (un)n∈N converge si et seulement si
lim inf un = lim supn un.
Remarque Si (fn)n est une suite d’applications de E dans R, on note lim sup fn la fonction qui à
x ∈ E associe lim sup fn(x) ∈ R.
Proposition 3.2.3. La mesurabilité est stable par passage à la limite.
(i) Soit (fn)n∈N une suite de fonctions mesurables sur (E,A) à valeurs dans R. Les fonctions
sup fn, inf fn, lim sup fn et lim inf fn sont mesurables.
(ii) Soit (fn)n∈N une suite de fonctions mesurables sur (E,A) à valeurs dans C telle que, pour tout
x ∈ E, la limite limn fn(x) = f(x) existe. Alors f est mesurable.
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Démonstration. Établissons tout d’abord le point (i). Par hypothèse, pour tout a ∈ R, l’ensemble
{fn ≤ a} appartient à A. Or,

{sup fn ≤ a} =
⋂
n

{fn ≤ a}

D’après le corollaire , sup fn est mesurable. Comme inf fn = − sup (−fn) , inf fn est mesurable.
Enfin, lim sup fn = infn

(
supk≥n fk

)
et lim inf fn = supn (infk≥n fk) sont mesurables d’après ce qui

précède.

Pour prouver le point (ii), quitte à considérer les parties réelle et imaginaire des fonctions fn, on peut
supposer que fn est réelle. Mais alors f = lim inf fn = lim sup fn est mesurable d’après (i).
Proposition 3.2.4. Soit f et g deux applications mesurables de ( E,A ) dans R+(muni de sa tribu
borélienne). Alors {f < g} et {f ≤ g} sont des éléments de A.

Démonstration. En décomposant ces ensembles de la façon suivante :

{f < g} = ∪q∈Q{f < q < g} = ∪q∈Q({f < q} ∩ {q < g})
{f ≤ g} = ∩n≥1{f < g + 1/n}

on obtient leur appartenance à la tribu A.

3.3 Approximation des fonctions mesurables

L’objet de ce paragraphe est d’établir un résultat d’approximation relativement élémentaire mais
fondamental pour la construction de l’intégrale de Lebesgue : toute fonction mesurable à valeurs dans
R+est limite croissante de fonctions élémentaires, appelées fonctions étagées.
Définition 3.3.1. On noteraM (resp.M+) l’ensemble des fonctions mesurables (resp. mesurables
positives) sur ( E,A ) à valeurs dans R ( respR+).
Définition 3.3.2. Une fonction mesurable sur (E,A) à valeurs dans C est dite étagée si elle prend
seulement un nombre fini de valeurs distinctes. On notera E+(resp. E ) l’ensemble des fonctions
étagées sur (E,A) à valeurs dans R+(resp. C).

Une fonction étagée ne peut prendre que des valeurs finies (dans C ) contrairement aux fonctions
mesurables à valeurs dans R. Soit f une fonction étagée et n le nombre de valeurs distinctes prises
par f . Notons α1, . . . , αn ces valeurs et posons, pour i = 1 . . . , n, Ai = {f = αi}. Alors les parties
(Ai)i=1,...,n sont mesurables et f peut encore s’écrire

f =
n∑
i=1

αi1Ai

Réciproquement, toute combinaison linéaire à coefficients réels ou complexes de fonctions
caractéristiques d’ensembles mesurables est une fonction étagée. Remarquons de plus que les
fonctions étagées sur(E,A) forment un espace vectoriel.
Théorème 3.3.1. Soit f une fonction mesurable sur ( E,A ) à valeurs dans R+. Il existe une suite
croissante (fn)n∈N de fonctions étagées positives qui converge simplement vers f . De plus, la
convergence est uniforme sur tout ensemble B ∈ A sur lequel f est bornée.



18 CHAPITRE 3. APPLICATIONS MESURABLES

Démonstration. Pour n ∈ N et k = 0, 2, . . . n2n − 1, posons

An = {f ≥ n} et An,k =

{
k

2n
≤ f <

k + 1

2n

}
On définit alors la fonction fn par :

fn =
n2n−1∑
k=0

k

2n
1An,k

+ n1An

Par définition, fn est une fonction étagée positive telle que fn ≤ f . D’autre part, on vérifie que si
x ∈ An,k,

fn+1(x) =

{
fn(x) si 2k

2n+1 ≤ f(x) < 2k+1
2n+1

fn(x) + 1
2n+1 si 2k+1

2n+1 ≤ f(x) < 2(k+1)
2n+1

De même, si x ∈ An,

fn+1(x) =

{
n+ 1 si f(x) ≥ n+ 1

n+ l
2n+1 si n+ l

2n+1 ≤ f(x) < n+ l+1
2n+1 , 0 ≤ l ≤ 2n+1 − 1

Ainsi, pour tout n ∈ N et tout x ∈ E, fn(x) ≤ fn+1(x) : la suite (fn) est croissante.
De plus, (An)n est une suite décroissante d’éléments de A donc si x ∈ Acn0

, alors pour tout
n ≥ n0, x ∈ Acn ou encore

0 ≤ f(x)− fn(x) ≤ 1

2n

Ceci implique que (fn(x))n converge vers f(x). Ainsi, la suite (fn) converge sur l’ensemble ∪nAcn
qui n’est autre que {f < +∞}.

D’autre part, si x ∈ {f = +∞} alors, pour tout n ∈ N, fn(x) = n qui tend vers +∞ quand n tend
vers +∞.

Soit à présent B ∈ A tel que f soit bornée sur B. Il existe n1 tel que, pour tout x ∈ B, f(x) < n1.
Alors B ∩ An1 = ∅ et ainsi,

∀n ≥ n1,∀x ∈ B, 0 ≤ f(x)− fn(x) ≤ 1

2n

La convergence est donc bien uniforme sur B.
Corollaire 3.3.1. Toute fonction f mesurable sur (E,A) à valeurs dans R (ou C ) est limite simple
d’une suite ( fn ) de fonctions étagées à valeurs dans R (ou C ).

Démonstration. Si f est à valeurs dans R, on peut l’écrire f = f+ − f−avec f+ = sup(f, 0) et
f− = − inf(0, f). Comme f+et f−sont mesurables à valeurs dans R+, il existe des suites (gn) et (hn)
de fonctions étagées positives tendant simplement vers f+et f−respectivement. La suite ( fn ), où
fn = gn − hn, est formée de fonctions étagées et converge simplement vers f . Si f est à valeurs
complexes, on l’écrira comme combinaison de ses parties réelle et imaginaire.



Chapitre 4
Mesures positives

4.1 Définitions et propriétés élémentaires

Définition 4.1.1. Soit ( E,A ) un espace mesurable. On appelle mesure positive sur ( E,A ) une
application µ de A dans R+telle que
(i) µ(∅) = 0,
(ii) si (An)n∈N est une suite d’éléments deux à deux disjoints d’éléments de A, alors

µ (∪nAn) =
∞∑
n=0

µ (An)

On peut parfois préciser le terme de mesure positive

– Si µ(E) < +∞, on dit que la mesure µ est finie (ou bornée).
– Si µ(E) = 1, la mesure µ est appelée mesure de probabilité.
– S’il existe une suite (An)n∈N d’éléments de A telle que ∪nAn = E et, pour tout n ∈ N, µ (An) est

fini, on dit que µ est une mesure σ-finie.
Définition 4.1.2. On appelle espace mesuré tout triplet ( E,A, µ ) où ( E,A ) est un espace
mesurable et µ est une mesure positive sur ( E,A ).

Analysons à présent les propriétés satisfaites par une mesure en commençant par les propriétés
faisant intervenir un nombre fini d’ensembles.
Proposition 4.1.1. Soit ( E,A, µ ) un espace mesuré.
(i) Si A1, . . . , An sont des éléments de A deux à deux disjoints alors

µ (A1 ∪ A2 ∪ · · · ∪ An) = µ (A1) + · · ·+ µ (An) .

(ii) Si A et B sont deux éléments de A tels que A ⊂ B, alors µ(A) ≤ µ(B). De plus, si µ(A) < +∞,
alors µ(B\A) = µ(B)− µ(A).
(iii) Soient A et B deux éléments de A, µ(A ∪B) + µ(A ∩B) = µ(A) + µ(B).

Démonstration. Le point (i) s’établit à partir du point (ii) de la définition d’une mesure en
choisissant Ak = ∅ pour k 6= 1, . . . , n.
Pour (ii), si A ⊂ B, on écrit B = A ∪ (B\A). Comme A et ( B\A ) sont disjoints, µ(B) est égal à
µ(A) + µ(B\A) ≥ µ(A).

19
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Pour établir le point (iii), distinguons deux cas. Si µ(A ∩B) = +∞ alors µ(A) ou µ(B) vaut aussi
+∞. Sinon, il faut remarquer que A ∪B s’écrit comme la réunion disjointe de (A\(A ∩B)), A ∩B
et B\(A ∩B). En utilisant le point (i), il vient :

µ(A ∪B) = µ(A\(A ∩B)) + µ(A ∩B) + µ(B\(A ∩B)).

Puisque A ∩B est bien entendu inclus dans A et dans B le point (ii) fournit le dernier argument :

µ(A ∪B) = µ(A)− µ(A ∩B) + µ(A ∩B) + µ(B)− µ(A ∩B)

= µ(A) + µ(B)− µ(A ∩B),

ce qui est le résultat attendu.
Donnons une définition équivalente de la notion de mesure (positive).
Proposition 4.1.2. Une application µ de A dans R+est une mesure si et seulement si
(i) µ(∅) = 0 ;
(ii) si A et B sont deux éléments disjoints de A, µ(A ∪B) = µ(A) + µ(B),
(iii) pour toute suite croissante (Bn)n∈N d’éléments de A, µ (∪nBn) = limn µ (Bn).

Démonstration. Supposons que les points (i), (ii) et (iii) de la proposition soient vrais. Par récurrence
sur le point (ii), on obtient que, si A1, . . . , An sont des éléments de A deux à deux disjoints alors

µ (A1 ∪ A2 ∪ · · · ∪ An) = µ (A1) + · · ·+ µ (An)

Soit (An)n∈N une suite d’éléments deux à deux disjoints de A. Pour tout n ∈ N, posons
Bk = ∪n≤kAn. On a µ (Bk) =

∑k
n=0 µ (An). De plus, (Bk)k∈N est une suite croissante et ∪∞k=0Bk

coïncide avec ∪∞n=0An. Par hypothèse, on obtient

µ (∪∞n=0An) = µ (∪∞k=0Bk) = lim
k→∞

µ (Bk) = lim
n→∞

n∑
k=1

µ (Ak) =
∞∑
k=0

µ (Ak)

Réciproquement, supposons que µ soit une mesure. Soit (Bn)n∈N une suite croissante d’éléments de
A. Posons A0 = B0 et, pour tout n ≥ 1, An = Bn\Bn−1 ∈ A. Alors (An)n∈N est une suite
d’éléments de A deux à deux disjoints et, pour tout n ≥ 0, Bn = ∪nk=0Ak. Il en résulte que

µ (∪∞n=0Bn) = µ (∪∞k=0Ak) =
∞∑
k=0

µ (Ak) = lim
n→∞

n∑
k=1

µ (Ak) = lim
n→∞

µ (Bn) ,

et la proposition est démontrée.
Proposition 4.1.3. Soit ( E,A, µ ) un espace mesuré.
(i) Si (Bn)n∈N est une suite d’éléments de A, alors µ (∪∞n=0Bn) ≤

∑∞
n=0 µ (Bn).

(ii) Si (An)n∈N est une suite décroissante d’éléments de A telle qu’il existe n0 avec µ (An0) fini, alors
la suite (µ (An))n∈N converge en décroissant vers µ (∩nAn).

Démonstration. Démontrons (i). Posons A0 = B0 et, pour tout n ≥ 1, An = Bn\ (∪k<nBk). Les
ensembles (An)n∈N sont deux à deux disjoints et Bn = ∪k≤nAk. Il en résulte que

µ (∪∞n=0Bn) = µ (∪∞k=0Ak) =
∞∑
k=0

µ (Ak) ≤
∞∑
n=0

µ (Bn) ,
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puisque An ⊂ Bn pour tout n ∈ N.
Démontrons (ii). Pour i ≥ n0, posons Bk = An0\Ak. La suite (Bk)k≥n0

est croissante et on a
∪k≥n0Bk = An0\ (∩k≥n0Ak). Puisque ∩k≥n0Ak ⊂ An0 et Ak ⊂ An0 , on a

µ (An0\ (∩k≥n0Ak)) = µ (An0)− µ (∩k≥n0Ak) et µ (Bk) = µ (An0)− µ (Ak) ,

d’où

µ (An0)− µ (∩k≥n0Ak) = µ (∪k≥n0Bk) = lim
k→∞

µ (Bk)

= lim
k→∞

(µ (An0)− µ (Ak)) = µ (An0)− lim
k→∞

µ (Ak)

et donc µ (∩k≥1Ak) = limk→∞ µ (Ak).

Remarque Dans l’énoncé ( ii ), l’hypothèse de l’existence d’un entier n0 tel que µ (An0) est fini ne
peut être supprimée. En effet, si µ est la mesure de comptage sur N et An = {n, n+ 1, . . .} alors
µ (An) = +∞ et ∩nAn = ∅.

4.2 Mesures discrètes

Les premiers exemples de mesures que l’on va considérer sont à la fois élémentaires et
fondamentaux. Ils correspondent à l’idée intuitive de masses ponctuelles : il va s’agir d’affecter des
poids à des points de l’espace.

L’exemple le plus naïf consiste à affecter un poids à un seul point.
Définition 4.2.1. (Mesure de Dirac). Soit ( E,A ) un espace mesuré et a ∈ E. Posons, pour tout
A ∈ A :

δa(A) =

{
1 si a ∈ A,
0 si a /∈ A.

L’application δa est une mesure de probabilité, appelée mesure (ou masse) de Dirac au point a.

Remarque Si A ∈ A, δa(A) = 1A(a).
Pour montrer que δa est une mesure, utilisons par exemple la définition alternative d’une mesure
fournie par la proposition 3.1.4. Il est clair que δa(∅) est nul. Soit A et B deux ensembles disjoints
appartenant à A. Alors

δa(A ∪B) = 1A∪B(a) = 1A(a) + 1B(a) = δa(A) + δa(B).

Soit à présent une suite croissante (Bn)n∈N d’éléments de A. Alors

a ∈ ∪nBn ⇐⇒ ∃n0 ≥ 0, a ∈ Bn0 ⇐⇒ ∃n0 ≥ 0,∀n ≥ n0, a ∈ Bn

Donc, si a ∈ ∪nBn alors δa (∪nBn) = 1 et la suite (δa (Bn))n∈N (à valeurs dans {0, 1} ) vaut 1 à
partir d’un certain rang. De même, si a /∈ ∪nBn alors δa (∪nBn) = 0 et la suite (δa (Bn))n∈N est la
suite nulle.
Définition 4.2.2. (Mesure de Bernoulli). Soit p ∈]0, 1[. La mesure de Bernoulli de paramètre p est
définie par µ = (1− p)δ0 + pδ1. C’est une mesure de probabilité.
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Définition 4.2.3. (Mesures discrètes). Soit (E,A) un espace mesurable. Soit (an)n∈N une suite de
points de E et (αn)n∈N une suite de réels positifs. Posons pour tout A ∈ A,

µ(A) =
∞∑
n=0

αnδan(A)

L’application µ : A → R+est une mesure positive. Tout point an tel que αn > 0 est appelé atome de
µ.

Remarque Si (ak,n)k,n∈N est une suite de nombres positifs, alors

∞∑
k=0

∞∑
n=0

ak,n =
∞∑
n=0

∞∑
k=0

ak,n

l’égalité ayant lieu dans R+
.

Montrons que l’application µ =
∑

n αnδan définie sur A est une mesure. Clairement, µ(∅) = 0. Soit
(Ak)k∈N une suite d’éléments disjoints de A. Alors

µ (∪kAk) =
∞∑
n=0

αnδan (∪kAk) =
∞∑
n=0

αn1∪kAk
(an) =

∞∑
n=0

αn

∞∑
k=0

1Ak
(an)

=
∞∑
k=0

∞∑
n=0

αn1Ak
(an) =

∞∑
k=0

∞∑
n=0

αnδan (Ak) =
∞∑
k=0

µ (Ak)

Exemple 4.2.1. La mesure de Poisson de paramètre λ > 0 est un exemple très classique de mesure
discrète. Elle est définie par

µ =
+∞∑
k=0

e−λ
λk

k!
δk

Remarquons de plus que c’est une mesure de probabilité.

4.3 Mesure de Lebesgue

Théorème 4.3.1. Il existe une unique mesure λ sur (R,B(R)) telle que
(i) λ([0, 1]) = 1,
(ii) Pour tout a ∈ R et tout B ∈ B(R), λ(a+B) = λ(B).

Elle est appelée mesure de Lebesgue sur R.

Remarque La mesure de Lebesgue est la seule mesure invariante par translation qui affecte la mesure
1 à l’ensemble [0, 1].
Cette mesure coïncide avec la notion intuitive de longueur comme le montre le résultat suivant.
Proposition 4.3.1. Pour tous a < b réels,

λ([a, b]) = λ(]a, b]) = λ([a, b[) = λ(]a, b[) = b− a.

Si I est un intervalle non borné alors λ(I) = +∞.
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Démonstration. Soit α = λ({0}). Alors, d’après l’invariance par translation de λ, pour tout x ∈ R,

λ({x}) = λ(x+ {0}) = λ({0}) = α

Ainsi, pour tout n ≥ 1,

nα = λ({1/k, k = 1, . . . , n}) ≤ λ([0, 1]) = 1

Ceci assure donc que α = 0. On dit que λ ne charge aucun singleton. La mesure des intervalles ne
dépend pas du fait qu’ils contiennent ou non leurs extrémités (on utilisera cette remarque dans la suite
sans le rappeler systématiquement).

Soit n ≥ 1. Découpons ]0, 1] en n intervalles disjoints égaux.

1 = λ([0, 1]) = λ(]0, 1]) = λ (∪nk=1] (k − 1)/n, k/n])

=
n∑
k=1

λ((k − 1)/n+]0, 1/n

])
= nλ([0, 1/n])

Ainsi, pour tout n ≥ 1, λ(]0, 1/n] = 1/n.
Soit à présent n ≥ 1 et k1 ≤ k2 ∈ Z. Alors

λ(]k1/n, k2/n]) = λ
(
∪k2−k1l=1

]
(k1 + l − 1) /n, (k1 + l) /n

])
=
k2
n
− k1
n
..

Ainsi, pour tous rationnels r ≤ r′, λ(]r, r′[) = r′ − r.
Soit a < b ∈ R. il existe deux suites (un)n et (vn)n de rationnels strictement décroissante pour la
première et strictement croissante pour la seconde telles que un ≤ vn pour tout n et qui convergent
respectivement vers a et b. On obtient alors

λ(]a, b[) = λ (∪n]un, vn[) = lim
n
λ(]un, vn[) = lim

n
(vn − un) = b− a.

Soit enfin I un intervalle non borné. Supposons-le de la forme [a,+∞[. Alors, pour tout n ∈ N, I
contient [a, a+ n] et ainsi, λ(I) ≥ n. Ceci assure que λ(I) = +∞.
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Chapitre 5
Construction de l’intégrale de Lebesgue

Dans ce chapitre, on se donne un espace mesuré ( E,A, µ ). L’idée est de construire l’intégrale pour
des fonctions de plus en plus générales grâce à des passages à la limite.

5.1 Intégration des fonctions étagées positives

Définition 5.1.1. Soit f une fonction étagée positive, prenant les valeurs distinctes α1, . . . , αn. On
pose Ai = f−1 ({αi}) pour 1 ≤ i ≤ n. On appelle intégrale de f par rapport à µ, et on note

∫
fdµ,

le nombre fini ou infini (élément de R+) défini par

∫
fdµ =

n∑
i=1

αiµ (Ai)

avec la convention usuelle en théorie de la mesure : 0×∞ = 0.
Proposition 5.1.1. L’intégrale de fonctions étagées positives vérifie les propriétés suivantes.
(i) Si f et g sont deux fonctions étagées positives et λ ∈ R∗+, alors

∫
(λf + g)dµ = λ

∫
fdµ+

∫
gdµ

(ii) Si f et g sont deux fonctions étagées positives telles que f ≤ g, alors

∫
fdµ ≤

∫
gdµ

Démonstration. Montrons la propriété (i) dans le cas où λ = 1. Le cas général s’en déduit
immédiatement. Posons

f =
n∑
i=1

αi1Ai
et g =

m∑
i=1

βj1Bj

où les (αi)i (resp. les (βj)j ) sont distincts. Notons γ1, . . . , γl les valeurs (distinctes) prises par f + g et

Ck = (f + g)−1 (γk) =
⋃

(i,j)∈Ik

(Ai ∩Bj) ,

25
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où Ik = {(i, j), αi + βj = γk}. Puisque les ensembles (Ai ∩Bj)i,j sont deux à deux disjoints,

µ (Ck) =
∑

(i,j)∈Ik

µ (Ai ∩Bj) .

On a donc par définition de l’intégrale de f + g

∫
(f + g)dµ =

l∑
k=1

γkµ (Ck) =
l∑

k=1

∑
(i,j)∈Ik

(αi + βj)µ (Ai ∩Bj)

=
n∑
i=1

m∑
j=1

αiµ (Ai ∩Bj) +
m∑
j=1

n∑
i=1

βjµ (Ai ∩Bj)

=
n∑
i=1

αiµ (Ai) +
m∑
j=1

βjµ (Bj)

=

∫
fdµ+

∫
gdµ

Pour établir (ii), il suffit d’appliquer (i), en remarquant que g − f est une fonction étagée positive,
pour obtenir

∫
fdµ ≤

∫
fdµ+

∫
(g − f)dµ =

∫
(f + (g − f))dµ =

∫
gdµ

Ceci achève la preuve.
Remarque Soit la fonction f =

∑
i αi1Ai

où les ( αi ) ne sont pas nécessairement distincts et les ( Ai
) nécessairement disjoints. On a encore

∫
fdµ =

∑
i αiµ (Ai).

5.2 Intégration des fonctions mesurables positives

Définition 5.2.1. Soit f une fonction mesurable à valeurs dans R+. On appelle intégrale de f par
rapport à µ, et on note

∫
fdµ l’élément de R+défini par

∫
fdµ = sup

{∫
udµ, u ∈ E+telle que u ≤ f

}
Remarque Si f est une fonction étagée positive alors les deux définitions de son intégrale coïncident
car le supremum est atteint pour u = f .
Proposition 5.2.1. (Croissance de l’intégrale). Pour toutes fonctions f et g mesurables positives
telles que f ≤ g,

∫
fdµ ≤

∫
gdµ

Démonstration. C’est une conséquence immédiate de l’inclusion

{u ∈ E+, u ≤ f} ⊂ {u ∈ E+, u ≤ g}
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et de la définition de l’intégrale.
Voici le premier des grands théorèmes d’intervertion limite-intégrale qui font toute la puissance de la
théorie de la mesure.
Théorème 5.2.1. (de convergence monotone ou de Beppo Levi). Soit (fn)n∈N une suite croissante de
M+. Alors f = limn fn (= supn fn) est aussi dansM+et

∫
fdµ = lim

n→+∞

∫
fndµ

Démonstration. On sait déjà que le supremum d’éléments deM+est encore dansM+d’après la
proposition 2.2.8. Comme fn ≤ f , on a

∫
fndµ ≤

∫
fdµ. La croissance de l’intégrale assure que la

suite
(∫

fndµ
)
n

est elle aussi croissante et donc convergente dans R+. On obtient donc

lim
n

∫
fndµ ≤

∫
fdµ

Démontrons l’inégalité opposée. Soit u une fonction positive étagée inférieure à f et λ ∈]0, 1[. Posons

En = {x ∈ E, fn(x) ≥ λu(x)}

La suite (En)n∈N est donc croissante (au sens de l’inclusion). Soit x ∈ E. Si u(x) = 0 alors x ∈ En
pour tout n ∈ N. Si u(x) > 0 alors

lim
n
fn(x) = f(x) ≥ u(x) > λu(x)

et ainsi x ∈ En pour n assez grand et donc ∪nEn = E. D’autre part, par définition de En,
fn ≥ λu1En et donc, pour tout n ∈ N, par croissance de l’intégrale,

∫
fndµ ≥

∫
λu1Endµ

La fonction λu1En est étagée positive. On sait donc calculer son intégrale. Si u =
∑k

i=1 αi1Ai
alors

∫
udµ =

k∑
i=1

αiµ (Ai) et
∫
u1Endµ =

k∑
i=1

αiµ (Ai ∩ En)

Or, pour tout i = 1, . . . , k, µ (Ai ∩ En) converge en croissant vers µ (Ai), donc,
∫
u1Endµ converge

vers
∫
udµ. On a donc établi que, pour tout u ∈ E+tel que u ≤ f et tout λ ∈] 0, 1[,

lim
n

∫
fndµ ≥ lim

n
λ

∫
u1Endµ = λ

∫
udµ

On obtient donc, en faisant tendre λ vers 1 , que, l’intégrale de toute fonction étagée positive u
majorée par f est inférieure à la limite des intégrales des fonctions fn. Il en est donc de même pour
l’intégrale de f :

∫
fdµ = sup

{∫
udµ, u ∈ E+, telle que u ≤ f

}
≤ lim

n

∫
fndµ
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et l’égalité est donc établie.
Corollaire 5.2.1. Si f et g sont deux fonctions mesurables positives, alors

∫
(f + g)dµ =

∫
fdµ+

∫
gdµ

Démonstration. D’après le théorème 2.3.3, il existe des suites (fn)n∈N et (gn)n∈N croissantes de
fonctions étagées positives qui convergent simplement vers f et g respectivement. Alors la suite
(fn + gn)n∈N est une suite croissante de fonctions étagées positives qui converge simplement vers
f + g. La linéarité de l’intégrale de fonctions étagées assure alors, pour tout n,

∫
(fn + gn) dµ =

∫
fndµ+

∫
gndµ

Le théorème de Beppo Levi permet de conclure en passant à la limite.
Corollaire 5.2.2. (Intervertion du signe somme et du signe intégrale). Si (fn)n∈N est une suite de
fonctions mesurables positives, on a

∫ ( ∞∑
n=0

fn

)
dµ =

∞∑
n=0

∫
fndµ

l’égalité ayant lieu dans R+.

Démonstration. Posons gn =
∑n

k=0 fk. La suite (gn)n∈N est une suite croissante de fonctions
mesurables donc on peut

∫ ( ∞∑
n=0

fn

)
dµ =

∫ (
lim
n→∞

gn

)
dµ = lim

n→∞

∫
gndµ

= lim
n→∞

n∑
k=0

(∫
fkdµ

)
=
∞∑
k=0

(∫
fkdµ

)

grâce au théorème de convergence monotone.

5.3 Intégration de fonctions mesurables

Définition 5.3.1. Une fonction f définie sur E à valeurs dans R ou C est dite intégrable (par rapport
à µ) si elle est mesurable et si

∫
|f |dµ < +∞.

Nous noterons L1
R(µ) (resp L1

C(µ) ) l’ensemble des fonctions intégrables à valeurs réelles (resp.
complexes). Pour être plus précis, nous utiliserons (en cas d’éventuelles confusions) les notations
L1

R(E,A, µ) et L1
C(E,A, µ).

Proposition 5.3.1. Soit f une fonction mesurable à valeurs dans R. Alors f est intégrable si et
seulement si f+et f−le sont.

Démonstration. Rappelons que f+ = sup(f, 0) et f− = − inf(f, 0) = sup(−f, 0). On a alors

|f | = f+ + f−, f− ≤ |f |, f+ ≤ |f |
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La proposition découle de ces relations.
Définition 5.3.2. Soit f ∈ L1

R(µ). On appelle intégrale de f , et on note
∫
fdµ, le nombre réel

∫
fdµ =

∫
f+dµ−

∫
f−dµ

Remarque On pourra noter encore

∫
fdµ =

∫
f(x)µ(dx)

Certains mathématiciens adoptent quant à eux la notation
∫
f(x)dµ(x) que nous éviterons

d’employer. Ceci dit, il ne s’agit que d’une notation, ni plus ni moins arbitraire qu’une autre.
Proposition 5.3.2. L’ensemble L1

R(µ) est un espace vectoriel sur R et l’application qui à f associe∫
fdµ est une forme linéaire sur cet espace. De plus, on a

(i) l’intégrale conserve la positivité (si f ∈ L1
R(µ) et f ≥ 0, alors

∫
fdµ ≥ 0 ),

(ii) l’intégrale conserve les inégalités (si f, g ∈ L1
R(µ) et f ≤ g, alors

∫
fdµ ≤

∫
gdµ ),

(iii) si f ∈ L1
R(µ),

∣∣∫ fdµ∣∣ ≤ ∫ |f |dµ.

Démonstration. On sait déjà que l’ensemble des fonctions réelles mesurables est un espace vectoriel
sur R. De plus, si f, g ∈ L1

R(µ) et λ ∈ R, alors |λf + g| ≤ |λ||f |+ |g|. On en déduit que

∫
|λf + g|dµ ≤ |λ|

∫
|f |dµ+

∫
|g|dµ < +∞

L’ensemble L1
R(µ) est donc un espace vectoriel sur R.

Soient f, g ∈ L1
R(µ). On a

{
f + g = (f + g)+ − (f + g)−

f + g = f+ − f− + g+ − g−

d’où (f + g)+ + f− + g− = (f + g)− + f+ + g+. On intègre cette égalité par rapport à µ en
remarquant que tous les termes sont des fonctions mesurables positives. Il vient donc

∫
(f + g)+dµ+

∫
f−dµ+

∫
g−dµ =

∫
(f + g)−dµ+

∫
f+dµ+

∫
g+dµ

Toutes ces quantités sont finies donc on obtient

∫
(f + g)+dµ−

∫
(f + g)−dµ =

∫
f+dµ−

∫
f−dµ+

∫
g+dµ−

∫
g−dµ

ce qui établit la linéarité de l’intégrale. On montre de même que

∫
(λf)dµ = λ

∫
fdµ

Pour prouver (i), on remarque que, si f ∈ L1
R(µ) est positive, alors son intégrale est celle qui a été

définie dans la définition 4.2.1. Elle appartient à R+. Le point (ii) se déduit du point (i) en considérant
la fonction positive et intégrable g − f . Pour montrer (iii) on écrit tout simplement,
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∣∣∣∣∫ fdµ

∣∣∣∣ =

∣∣∣∣∫ f+dµ−
∫
f−dµ

∣∣∣∣ ≤ ∫ f+dµ+

∫
f−dµ =

∫
|f |dµ

ce qui assure la commutation annoncée de la valeur absolue et de l’intégrale.
Proposition 5.3.3. Soit f une fonction mesurable à valeurs dans C. Alors f est intégrable si et
seulement si Re f et Im f le sont.
Définition 5.3.3. Soit f ∈ L1

C(µ). On appelle intégrale de f , et on note
∫
fdµ, le nombre complexe

∫
fdµ =

∫
Re fdµ+ i

∫
Im fdµ

Proposition 5.3.4. L’ensemble L1
C(µ) est un espace vectoriel sur C et l’application qui à f associe∫

fdµ est une forme linéaire sur cet espace. De plus,

∣∣∣∣∫ fdµ

∣∣∣∣ ≤ ∫ |f |dµ
Démonstration. Soit α ∈ C tel que

∣∣∫ fdµ∣∣ = α
∫
fdµ. On peut toujours choisir α de module 1 et

∣∣∣∣∫ fdµ

∣∣∣∣ =

∫
αfdµ =

∫
Re(αf)dµ+ i

∫
Im(αf)dµ

≤
∫
|Re(αf)|dµ+

∫
| Im(αf)|dµ ≤

∫
|αf |dµ =

∫
|f |dµ

5.4 Mesures discrètes

Soit (E,A) un espace mesurable, (ak)k∈N∗ une suite de points de E telle que, pour tout
k ∈ N∗, {αk} ∈ A et (αk)k∈N∗ une suite de réels positifs. On définit une mesure µ sur(E,A)

µ =
∞∑
k=1

αkδak

On souhaite étudier l’ensemble L1(µ) et comprendre l’objet
∫
fdµ pour f ∈ L1(µ).

Proposition 5.4.1. Avec les notations du début du paragraphe.
(i) Soit f mesurable de (E,A) dans R+. Alors, dans R+,

∫
fdµ =

∑∞
k=1 αkf (ak).

(ii) Une fonction f mesurable de (E,A) dans C est µ-intégrable ssi
∑∞

k=1 αk |f (ak)| < +∞. Dans
ce cas,

∫
fdµ =

∑∞
k=1 αkf (ak).

Démonstration. Démontrons le point (i). On procède en trois étapes. Supposons que f = 1A avec
A ∈ A. Alors

∫
fdµ = µ(A) =

∞∑
k=1

αk1A (ak) =
∞∑
k=1

αkf (ak)

Supposons à présent f étagée positive, alors f =
∑n

i=1 βi1Ai
. Par linéarité de l’intégrale,



5.5. MESURES À DENSITÉ 31

∫
fdµ =

n∑
i=1

βiµ (Ai) =
n∑
i=1

βi

∞∑
k=1

αk1Ai
(ak) =

∞∑
k=1

αk

n∑
i=1

βi1Ai
(ak) =

∞∑
k=1

αkf (ak)

Enfin, si f est mesurable positive, il existe une suite croissante de fonctions étagées positives (fn)n∈N
qui converge simplement vers f . Par le théorème de convergence monotone,

∫
fdµ = lim

n

∫
fndµ = lim

n

∞∑
k=1

αkfn (ak) =
∞∑
k=1

αk lim
n
fn (ak) =

∞∑
k=1

αkf (ak)

ce qui achève la preuve du point (i).
Démontrons à présent le point (ii). Soit f mesurable à valeurs dans C. Appliquons le point (i) à |f | : f
est µ-intégrable ssi

∫
|f |dµ est fini c’est-à-dire ssi

∑
k αk |f (ak)| est fini. Si tel est le cas, on écrit

f = (Re f)+ − (Re f)− + i(Im f)+ − i(Im f)−

Les quatre fonctions mesurables positives (Re f)+, . . . , (Im f)−sont intégrables par rapport à µ
(puisqu’elles sont toutes majorées par |f | ). D’après ( i ) et la linéarité de l’intégrale, on obtient la
relation souhaitée.
Exemples 5.4.1. Soit µ la mesure Bernoulli de paramètre p ∈]0, 1 [: µ = pδ1 + (1− p)δ0 . Alors,

∫
xµ(dx) = (1− p)× 0 + p× 1 et

∫
cos(πx/4)µ(dx) = 1− p+ p

√
2

2

Soit µ =
∑∞

k=1 p(1− p)k−1δk. Alors f ∈ L1 si et seulement si

∞∑
k=1

p(1− p)k−1|f(k)| < +∞

et dans ce cas,

∫
fdµ =

∞∑
k=1

p(1− p)k−1f(k)

5.5 Mesures à densité

Étant donné un espace mesuré (E,A, µ), on peut construire de nombreuses mesures à partir de µ
comme le montre la proposition suivante.
Proposition 5.5.1. Soit ( E,A, µ ) un espace mesuré et g une fonction mesurable positive sur ( E,A
). Soit ν l’application de A dans R+définie par

ν(A) =

∫
1Agdµ =

∫
A

gdµ

Alors ν est une mesure sur (E,A).
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Démonstration. On a évidemment ν(∅) = 0. Soit (An) une suite d’éléments de A deux à deux
disjoints. Posons A = ∪nAn. On a

ν(A) =

∫
1Agdµ =

∫ ∑
n

1Angdµ =
∑
n

∫
1Angdµ =

∑
n

ν (An)

grâce au théorème de convergence monotone.
Définition 5.5.1. La mesure ν est appelée mesure de densité g par rapport à µ. On la note souvent
g.µ. La fonction g est appelée la densité de ν par rapport à µ.
Proposition 5.5.2. (Intégration par rapport à une mesure à densité). Avec les notations de la
proposition 4.5.1.
(i) Soit f une fonction mesurable positive sur (E,A). Alors, dans R+,

∫
fdν =

∫
(fg)dµ (4.1)

(ii) Soit f une fonction mesurable à valeurs complexes sur (E,A). Alors f est intégrable pour ν si et
seulement si fg est intégrable pour µ et on a alors

∫
fdν =

∫
(fg)dµ

Démonstration. Pour démontrer le point (i), on procède en trois étapes. Si f = 1A avec A ∈ A, la
relation (4.1) découle de la définition de ν. Si f est étagée et positive, l’égalité se déduit de la linéarité
de l’intégrale. Supposons enfin que f soit simplement mesurable et positive. Soit (fn)n∈N une suite
croissante de fonctions étagées et positives qui converge simplement vers f . Par le théorème de
convergence monotone,

∫
fdν = lim

n

∫
fndν = lim

n

∫
(fng) dµ =

∫
(fg)dµ

Démontrons à présent le point (ii). Soit f mesurable à valeurs dans C. Appliquons le point (i) à
|f | : f est ν-intégrable ssi

∫
|f |gdν est fini c’est-à-dire ssi fg est µ-intégrable. Si tel est le cas, on

écrit

f = (Re f)+ − (Re f)− + i(Im f)+ − i(Im f)−

Les quatre fonctions mesurables positives (Re f)+, . . . , (Im f)−sont intégrables par rapport à ν
(puisqu’elles sont toutes majorées par |f | ). D’après ( i ) et la linéarité de l’intégrale, on obtient la
relation souhaitée.

5.6 Intégration par rapport à une mesure image

Proposition 5.6.1. (Définition d’une mesure image). Soit ( E,A ) et ( F,B ) deux espaces mesurables
et ϕ une application mesurable de E dans F . Soit µ une mesure sur (E,A). L’application ν qui à
B ∈ B associe

ν(B) = µ
(
ϕ−1(B)

)
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définit une mesure sur (F,B) appelée mesure image de µ par ϕ. On la notera µϕ.

Démonstration. Comme ϕ−1(∅) = ∅, on a µ (ϕ−1(∅)) = 0.
Soit (Bn)n∈N une suite d’éléments de B deux à deux disjoints. La suite ( ϕ−1 (Bn) ) est une suite
d’éléments de A deux à deux disjoints et ϕ−1 (UBn) = ∪ϕ−1 (Bn) donc

ν (∪nBn) = µ
(
ϕ−1 (∪nBn)

)
= µ

(
∪nϕ−1 (Bn)

)
=
∑
n

µ
(
ϕ−1 (Bn)

)
=
∑
n

ν (Bn) ,

ce qui achève la preuve.
Proposition 5.6.2. Avec les notations de la proposition 4.6.1.
(i) Soit f une fonction mesurable positive définie sur ( F,B ). Alors (l’égalité a lieu dans R+)

∫
F

fdµϕ =

∫
E

f ◦ ϕdµ (4.2)

(ii) Soit f une fonction mesurable à valeurs complexes définie sur (F,B). Alors f est intégrable par
rapport à µϕ si et seulement si f ◦ ϕ est intégrable par rapport à µ. Dans ce cas,

∫
F

fdµϕ =

∫
E

f ◦ ϕdµ

Démonstration. Démontrons le point (i) en trois étapes. Si f est la fonction indicatrice de B ∈ B,
l’égalité µϕ(B) = µ (ϕ−1(B)) qui définit la mesure image s’écrit encore

∫
Y

1Bdµϕ =

∫
X

1ϕ−1(B)dµ =

∫
X

1B ◦ ϕdµ

Si f est étagée positive, la relation (4.2) se déduit du cas précédent par linéarité. Enfin, si f est
mesurable positive, d’après le théorème d’approximation 2.3.3, il existe une suite (fn)n∈N croissante
de fonctions étagées positives qui converge simplement vers f . Alors (fn ◦ ϕ)n∈N est une suite
croissante de fonctions étagées positives qui converge simplement vers f ◦ ϕ. D’après ce qui précède,
on a, pour tout n ∈ N,

∫
Y

fndµϕ =

∫
X

fn ◦ ϕdµ

et l’égalité souhaitée est conséquence du théorème de convergence monotone.
Démontrons à présent le point (ii). Soit f mesurable à valeurs dans C. Le point (i) appliqué à |f |
montre que f est intégrable par rapport à µϕ si et seulement si f ◦ ϕ l’est par rapport à µ. Supposons
donc f intégrable et écrivons alors

f = (Re f)+ − (Re f)− + i(Im f)+ − i(Im f)−

Les quatre fonctions mesurables positives (Re f)+, . . . , (Im f)−sont intégrables par rapport à µϕ
(puisqu’elles sont toutes majorées par |f | ). D’après ( i ) et la linéarité de l’intégrale, on obtient la
relation souhaitée.
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5.7 Intégrale de Lebesgue et intégrale de Riemann

Rappelons brièvement les principes fondamentaux de l’intégrale de Riemann.

5.7.1 Intégrale sur un intervalle compact

Soit f une fonction réelle bornée sur [a, b]. Soit σ : a = x0 < x1 < · · · < xn+1 = b une subdivision
de [a, b]. On appelle pas de la subdivision le nombre δ(σ) = max1≤k≤n+1 (xk − xk−1). Posons

mk = inf {f(t), t ∈ [xk, xk+1]} et Mk = sup {f(t), t ∈ [xk, xk+1]}

Les sommes de Darboux associées à la subdivision σ sont

s(σ) =
n∑
k=1

mk (xk+1 − xk) et S(σ) =
n∑
k=1

Mk (xk+1 − xk)

Définition 5.7.1. On dit que f est intégrable au sens de Riemann sur [a, b] s’il existe un nombre réel
I tel que les sommes s(σ) et S(σ) tendent vers I quand δ(σ) tend vers 0 :

∀ε > 0,∃η > 0, ∀σ t.q. δ(σ) ≤ η, |S(σ)− I| ≤ ε et |s(σ)− I| ≤ ε.

Le nombre I est alors appelé l’intégrale de Riemann de f sur [a, b] et on le note
∫ b
a
f(t)dt.

Considérons à nouveau la subdivision σ et, pour tout k, choisissons ξk ∈ [xk−1, xk]. La somme de
Riemann définie par σ et ξ = (ξ1, . . . , ξn) est par définition

S(σ, ξ) =
n∑
k=1

f (ξk) (xk − xk−1)

Si f est intégrable au sens de Riemann, les sommes de Riemann convergent vers
∫ b
a
f(t)dt lorsque

δ(σ) tend vers 0 , uniformément par rapport au choix de ξ. Plus précisément,

∀ε > 0, ∃η > 0, ∀σ t.q. δ(σ) ≤ η, ∀ξ associé à σ, |S(σ, ξ)− I| ≤ ε.

Théorème 5.7.1. Toute fonction f continue par morceaux sur [a, b] est intégrable au sens de
Riemann. De plus, si f est continue, la fonction x 7→ F (x) =

∫ x
a
f(t)dt est dérivable sur [a, b] de

dérivée F ′ = f .

5.7.2 Intégrale généralisée

Soit f : [a, b[→ R, où b peut être égal à +∞, localement intégrable au sens de Riemann ; c’est-à-dire
intégrable au sens de Riemann sur tout intervalle compact [a, c] ⊂ [a, b[.

On dit que f admet une intégrale généralisée sur [a, b [ si la fonction x 7→
∫ x
a
f(t)dt admet une limite

lorsque x tend vers b (avec x < b ). On pose alors

∫ b

a

f(t)dt = lim
x→b−

∫ x

a

f(t)dt
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Dans ce cas, on dit encore que l’intégrale
∫ b
a
f(t)dt est convergente.

On dit que l’intégrale généralisée
∫ b
a
f(t)dt est absolument convergente si l’intégrale

∫ b
a
|f(t)|dt est

convergente.
Remarque La convergence absolue entraîne la convergence, mais la réciproque est fausse comme le
montre l’exemple classique

∫ ∞
1

sin t

t
dt

5.7.3 Comparaison des intégrales de Riemann et Lebesgue pour une fonction
bornée sur un intervalle compact

Proposition 5.7.1. Soit f une fonction continue sur [a, b]. Alors si λ désigne la mesure de Lebesgue
sur R, f1[a,b] ∈ L1

R(λ) et

∫
R
1[a,b]fdλ =

∫ b

a

f(t)dt

Démonstration. Il est clair que f1[a,b] est borélienne. Soit M = supt∈[a,b] |f(t)|. La fonction f étant
continue sur le compact [a, b],M est un réel positif et

∣∣f1[a,b]

∣∣ ≤M1[a,b] ∈ L1
R(λ)

ce qui assure que f1[a,b] est Lebesgue-intégrable. De même, pour tout x ∈ [a, b], f1[a,x] est
Lebesgue-intégrable. Posons F (x) =

∫
f1[a,x]dλ et montrons que F est dérivable en tout point x0 de

[a, b] de dérivée f (x0). Soit h > 0. Comme

1[a,x0+h]f = 1[a,x0]f + 1]x0,x0+h]f

on a

F (x0 + h)− F (x0)

h
=

1

h

∫
1x0,x0+h]fdλ

d’où

F (x0 + h)− F (x0)

h
− f (x0) =

1

h

∫
1x0,x0+h] (f − f (x0)) dλ

Soit ε > 0. Puisque f est continue en x0, il existe η > 0 tel que pour tout x tel que |x− x0| ≤ η, on
ait |f (x0)− f(x)| ≤ ε. Si 0 < h < η alors

∣∣∣∣F (x0 + h)− F (x0)

h
− f (x0)

∣∣∣∣ ≤ 1

h

∫
ε1]x0,x0+h]

dλ = ε

Le cas h < 0 se traite de même. Ainsi, F est dérivable sur [a, b] de dérivée f . Comme F (a) = 0 (car
λ({a}) = 0 ), on a F (x) =

∫ x
a
f(t)dt pour tout x ∈ [a, b] (et notamment pour x = b ).
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Remarque La proposition précédente s’étend facilement au cas d’une fonction f continue par
morceaux. Elle conduit à noter

∫
[a,b]

fdx l’intégrale de Lebesgue
∫
f1[a,b]dλ (et même

∫ b
a
f(x)dx.

Cette notation est souvent adoptée pour une fonction f intégrable au sens de Lebesgue sur [a, b] sans
hypothèse de continuité.
Lorsque l’on sort du cadre des fonctions continues par morceaux, les liens entre intégrales de
Riemann et de Lebesgue sont assez subtils. Voici quelques résultats éclairants.
Il existe des fonctions intégrables au sens de Lebesgue qui ne sont pas intégrables au sens de
Riemann. Par exemple la fonction f = 1Q∩[0,1] est intégrable au sens de Lebesgue et son intégrale est
nulle. En revanche, pour toute subdivision σ de [0, 1], on a S(σ) = 1 et s(σ) = 0.
Les fonctions intégrables au sens de Riemann sur [a, b] sont connues.
Théorème 5.7.2. (Lebesgue). Une fonction f : [a, b]→ R bornée est intégrable au sens de Riemann
ssi il existe N ⊂ [a, b] de mesure de Lebesgue nulle tel que f est continue en tout x ∈ [a, b]\N .

5.7.4 Intégrale de Riemann généralisée et intégrale de Lebesgue

Proposition 5.7.2. Soit f : [a, b [→ R une fonction continue. Alors f1[a,b[ ∈ L1
R(λ) si et seulement si∫ b

a
f(t)dt est absolument convergente et, dans ce cas, on a

∫
f1[a,b[dλ =

∫ b

a

f(t)dt

Démonstration. Supposons d’abord f positive. Soit (bn)n∈N une suite croissante de points de [a, b[
qui converge vers b. Pour tout n,

∫
f1[a,bn[dλ =

∫ bn

a

f(t)dt

En utilisant le théorème de convergence monotone (pour l’intégrale de Lebesgue), on a

∫
f1[a,b[dλ = lim

n→+∞

∫
f1[a,bn]dλ = lim

n→+∞

∫ bn

a

f(t)dt ∈ R+

Or, par définition, f est intégrable au sens de Lebesgue si et seulement si cette limite est finie, donc si
et seulement si f est intégrable au sens de Riemann. De plus les intégrales sont les mêmes.

Dans le cas général, on sait que f est intégrable au sens de Lebesgue si et seulement si |f | l’est, donc
si et seulement si

∫ b
a
f(t)dt est absolument convergente. Si c’est le cas, écrivons f = f+ − f−. On a

f+ ≤ |f | et f− ≤ |f | donc f+et f−sont intégrables dans les deux sens et

∫
f+1[a,b[dλ =

∫ b

a

f+(t)dt, et
∫
f−1[a,b[dλ =

∫ b

a

f−(t)dt

d’où le résultat par linéarité.



Chapitre 6
Théorèmes limites et applications

6.1 Lemme de Fatou

Dans le chapitre précédent, nous avons déjà établi un théorème limite fondamental : le théorème de
convergence monotone (ou théorème de Beppo Levi).
Théorème 6.1.1. Soit (fn)n∈N une suite croissante deM+. Alors f = limn fn ∈M+et

∫
fdµ = lim

n→+∞

∫
fndµ

Toutefois, l’hypothèse de croissance, très pratique puisqu’elle assure l’existence de la limite dans R+,
est inadaptée dans bien des situations. Nous avons besoin d’un théorème valable pour une suite de
fonctions générique. Le prix à payer est que l’on ne sera plus assuré de l’existence d’une limite. Par
contre la fonction lim inf fn est encore définie et c’est elle qui remplacera avantageusement la
fonction lim fn.
Théorème 6.1.2. (Lemme de Fatou). Si (fn)n∈N est une suite de fonctions mesurables positives, alors

∫
lim inf
n→∞

fndµ ≤ lim inf
n→∞

∫
fndµ

Démonstration. Posons g = lim inf fn. Par définition,

g = lim
n→+∞

inf
k≥n

fk = sup
n∈N

inf
k≥n

fk

La fonction gn = infk≥n fk est une fonction mesurable positive et la suite (gn)n∈N converge en
croissant vers g. Le théorème de convergence monotone assure donc :

lim
n→∞

∫
gndµ =

∫
lim inf
n→∞

fndµ

D’autre part, pour tout n ∈ N, gn ≤ fn, d’où, par croissance de l’intégrale,
∫
gndµ ≤

∫
fndµ. Le

second membre de cette inégalité n’a pas nécessairement de limite mais sa limite inférieure existe
toujours. On obtient donc (par mpassage à la limite inférieurem) :

37
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lim inf
n→∞

∫
gndµ ≤ lim inf

n→∞

∫
fndµ

La limite inférieure du premier membre de l’inégalité ci-dessus est en fait une limite d’après la
première partie de la preuve, qui n’est rien d’autre que l’intégrale de la limite inférieure de la suite
(fn)n∈N. Cette remarque achève donc la preuve.

6.2 Ensembles et fonctions négligeables

Définition 6.2.1. Soit ( E,A, µ ) un espace mesuré.
(i) On dit qu’une partie N de E est négligeable pour µ (ou µ-négligeable) s’il existe A ∈ A tel que
N ⊂ A et µ(A) = 0.
(ii) On dit que la tribu A est complète pour µ si toute partie µ-négligeable appartient à A.
Définition 6.2.2. Soit (E,A, µ) un espace mesuré. On dit qu’une propriété P sur E est vraie presque
partout (en abrégé p.p. ou µ-p.p.) si l’ensemble des points de E où elle est fausse est négligeable.
Une fonction f définie sur E à valeurs réelles ou complexes est dite µ-négligeable si {f 6= 0} est
négligeable.
Deux fonctions f et g définies sur E à valeurs dans un même ensemble F sont dites égales presque
partout si {f 6= g} est négligeable.
On dit qu’une suite (fn)n∈N de fonctions définies sur E à valeurs dans C converge vers fµ-presque
partout s’il existe un ensemble µ-négligeable N tel que pour tout x /∈ N , on ait limn fn(x) = f(x).

Le lemme suivant est très utile en pratique.
Lemme 6.2.1. (Inégalité de Markov). Soit f une fonction mesurable positive sur ( E,A ). Alors pour
tout λ > 0, on a

µ({f ≥ λ}) ≤ 1

λ

∫
fdµ

Démonstration. Il suffit d’intégrer la relation λ1{f≥λ} ≤ f qui est vraie puisque f est positive.
Proposition 6.2.1. Soit f une fonction mesurable de ( E,A ) dans R telle que

∫
|f |dµ < +∞. Alors

f est finie µ-presque partout.

Démonstration. En effet, pour tout n, on a

1

n

∫
|f |dµ ≥ µ({|f | ≥ n}) ≥ µ({|f | = +∞})

Comme
∫
|f |dµ est fini, en faisant tendre n vers +∞, on obtient µ({|f | = +∞}) = 0.

Remarque 5.2.5. La réciproque de cette proposition est fausse : la fonction constante égale à 1 est
finie λ-p.p. mais n’est pas intégrable par rapport à la mesure de Lebesgue.
Proposition 6.2.2. Soit f une fonction mesurable sur (E,A) à valeurs complexes. Alors f est
négligeable si et seulement si

∫
|f |dµ = 0.

Démonstration. Supposons tout d’abord que f est négligeable. Comme min(|f |, n) ≤ n1{f 6=0}, on a

∫
min(|f |, n)dµ ≤ nµ({f 6= 0}) = 0

d’où
∫

min(|f |, n)dµ = 0 pour tout n. D’après le théorème de convergence monotone, on a alors



6.2. ENSEMBLES ET FONCTIONS NÉGLIGEABLES 39

∫
|f |dµ =

∫
lim
n

min(|f |, n)dµ = lim
n

∫
min(|f |, n)dµ = 0

Réciproquement, supposons que
∫
|f |dµ = 0. Alors, pour tout n ≥ 1, on a

µ

({
|f | ≥ 1

n

})
≤ n

∫
|f |dµ = 0

L’ensemble {|f | 6= 0} s’écrit donc comme réunion dénombrable d’ensembles de mesure nulle :

{|f | 6= 0} =
⋃
n≥1

{
|f | ≥ 1

n

}

Il est donc également de mesure nulle.
Proposition 6.2.3. Soit ( E,A, µ ) un espace mesuré.
(i) Soit f et g deux fonctions mesurables positives telles que f ≤ g presque partout. Alors∫
fdµ ≤

∫
gdµ.

(ii) Soit f et g deux fonctions mesurables positives telles que f = g presque partout. Alors∫
fdµ =

∫
gdµ.

(iii) Soit f et g deux fonctions mesurables complexes telles que f = g presque partout. Alors f est
intégrable si et seulement si g l’est et, dans ce cas,

∫
fdµ ≤

∫
gdµ.

Démonstration. Pour prouver (i), on écrit

f = f1{f≤g} + f1{f>g}

que l’on intègre par rapport à µ :

∫
fdµ =

∫
f1{f≤g}dµ+

∫
f1{f>g}dµ

Par hypothèse, f1{f>g} est négligeable donc son intégrale est nulle. On a donc

∫
fdµ =

∫
f1{f≤g}dµ

De même, on voit que

∫
gdµ =

∫
g1{f≤g}dµ

Pour conclure, il suffit de remarquer que f1{f≤g} ≤ g1{f≤g}. Le point (ii) se déduit de (i) par
symétrie entre f et g.

Démontrons (iii). Si f = gµ-p.p., alors |f | = |g|µ-p.p., d’où
∫
|f |dµ =

∫
|g|dµ par (ii). Par

conséquent f ∈ L1
C(µ) si et seulement si g ∈ L1

C(µ). On obtient la conclusion par égalité µ-p.p. des
parties positives et négatives des parties réelles et imaginaires et en appliquant (ii).
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6.3 Théorème de convergence dominée

Théorème 6.3.1. (de convergence dominée). Soit (fn)n∈N une suite de fonctions mesurables sur
(E,A) à valeurs dans R ou C telle que :
(i) (fn)n∈N converge µ-presque partout vers une fonction f mesurable,
(ii) il existe une fonction g positive appartenant à L1

R(µ) telle que

∀n ≥ 1, |fn(x)| ≤ g(x) µ− p.p.

Alors les fonctions (fn)n∈N et f sont intégrables et

lim
n→∞

∫
fndµ =

∫
fdµ

On a même limn

∫
|fn − f | dµ = 0.

Démonstration. Supposons tout d’abord que la convergence de (fn)n∈N vers f ait lieu partout et que
les inégalités (ii) soient vraies pour tout x ∈ E. Posons gn = 2g − |fn − f |. Alors (gn)n∈N est une
suite de fonctions mesurables positives, et d’après le lemme de Fatou,

2

∫
gdµ =

∫
lim inf

n
gndµ ≤ lim inf

n

∫
gndµ = 2

∫
gdµ− lim sup

n

∫
|fn − f | dµ

Puisque
∫
gdµ < +∞, on voit que lim supn

∫
|fn − f | dµ ≤ 0. On en déduit donc que

lim
n→+∞

∫
|fn − f | dµ = 0

Il en résulte que
∫
fdµ = lim

∫
fndµ.

Passons à présent au cas général. Soit N ∈ A tel que, si x /∈ N, limn fn(x) = f(x) et µ(N) = 0.
Choisissons de plus, pour tout n ∈ N, un ensemble Nn ∈ A tel que si x /∈ Nn |fn(x)| ≤ g(x) et
µ (En) = 0. Posons M = N ∪ (∪nNn) ∈ A. On a encore µ(M) = 0. Posons hn = fn1Mc et
h = f1Mc . On a, pour tout x ∈ E et tout n,

lim
m→+∞

hm(x) = h(x) et |hn(x)| ≤ g(x)

La première partie de la preuve assure donc que lim
∫
|hn − h| dµ = 0. Pour conclure, il suffit de

remarquer que hn = fnµ− p.p. et h = fµ− p.p.
Corollaire 6.3.1. Soit (fn)n∈N une suite de fonctions mesurables sur (E,A) à valeurs dans R ou C
telle que

∑
n

∫
|fn| dµ < +∞. Alors les fonctions (fn)n∈N sont intégrables, la série

∑
n fn converge

µ− p.p. et il existe f ∈ L1(µ) telle que

f =
∞∑
n=1

fn µ− p.p., lim
n→∞

∫ ∣∣∣∣∣f −
n∑
k=1

fk

∣∣∣∣∣ dµ = 0,

∫
fdµ =

∞∑
n=1

∫
fndµ

Démonstration. Posons g =
∑

n≥1 |fn|. D’après le corollaire 4.2.6 (intervertion série-intégrale pour
des fonctions positives),
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∫
gdµ =

∑
n≥1

∫
|fn| dµ < +∞

La fonction g étant intégrable, elle est finie µ-p.p. Posons

N =

{
x ∈ E,

+∞∑
n=1

|fn(x)| = +∞

}

C’est un ensemble négligeable de A, et si x /∈ N , la série
∑
fn(x) est absolument convergente, donc

convergente. Posons alors

f(x) =

{∑+∞
n=1 fn(x) si x /∈ N

0 si x ∈ N

Cette fonction est mesurable comme limite simple de la suite (1Nc

∑n
k=1 fk)n∈N de fonctions

mesurables. De plus, comme

∀x ∈ N c, |f(x)| ≤
+∞∑
n=1

|fn(x)| = g(x)

et comme g est intégrable, f l’est aussi et on a

∫
|f |dµ ≤

∫
gdµ =

+∞∑
n=1

∫
|fn| dµ

Enfin,

∫ ∣∣∣∣∣f −
n∑
k=1

fk

∣∣∣∣∣ dµ =

∫
1Nc

∣∣∣∣∣f −
n∑
k=1

fk

∣∣∣∣∣ dµ =

∫
1Nc

∣∣∣∣∣
+∞∑

k=n+1

fk

∣∣∣∣∣ dµ
≤

+∞∑
k=n+1

∫
1Nc |fk| dµ ≤

+∞∑
k=n+1

∫
|fk| dµ

Par hypothèse, le membre de droite tend vers 0 , ce qui achève la preuve.

6.4 Intégrale dépendant d’un paramètre

Théorème 6.4.1. (continuité d’une intégrale à paramètre). Soit ( E,A, µ ) un espace mesuré, ( G, d )
un espace métrique et f une fonction définie sur E ×G, à valeurs réelles ou complexes. On suppose
que
(i) pour µ-presque tout x ∈ E, la fonction α 7→ f(x, α) est continue sur G,
(ii) pour tout α ∈ G, la fonction x 7→ f(x, α) est mesurable sur (E,A),
(iii) il existe une fonction g sur (E,A) mesurable, positive et intégrable telle que pour tout α ∈ G, on
ait |f(x, α)| ≤ g(x)µ− p.p.
Alors la fonction F : α 7→

∫
f(x, α)µ(dx) est définie et continue sur G.
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Démonstration. Pour tout α ∈ G, la fonction x 7→ f(x, α) est µ-intégrable et F est donc bien définie
sur G. Soit α ∈ G. Montrons que F est continue au point α. Comme G est un espace métrique, il
suffit de montrer que si (αn)n∈N est une suite de G qui converge vers α, alors la suite (F (αn))n∈N
converge vers α. Notons fn la fonction définie sur E qui à tout x ∈ E associe fn(x) = f (x, αn). La
suite (fn)n∈N satisfait aux hypothèses du théorème de convergence dominée, d’où la conclusion.
Théorème 6.4.2. (dérivabilité d’une intégrale à paramètre). Soit ( E,A, µ ) un espace mesuré, I un
intervalle ouvert de R et f une fonction définie sur E × R, à valeurs réelles ou complexes. On
suppose que
(i) pour µ-presque tout x ∈ E, la fonction α 7→ f(x, α) est dérivable sur I ,
(ii) pour tout α ∈ F , la fonction x 7→ f(x, α) est µ-intégrable,
(iii) il existe une fonction g sur (E,A) intégrable et positive telle que pour µ-presque tout x ∈ E, on
ait

∀α ∈ I,
∣∣∣∣∂f∂α(x, α)

∣∣∣∣ ≤ g(x)

Alors, pour tout α ∈ I , la fonction x 7→ ∂f
∂x

(x, α) est intégrable. De plus, la fonction
F : α 7→

∫
f(x, α)µ(dx) est dérivable sur I et

∀α ∈ I, F ′(α) =

∫
∂f

∂α
(x, α)µ(dx)

Démonstration. Par hypothèse, il existe un ensemble de mesure nulle N ∈ A tel que si x /∈ N , la
dérivée ∂f

∂α
(x, α) existe pour tout point α ∈ I et

∣∣∣∣∂f∂α(x, α)

∣∣∣∣ ≤ g(x)

Il en résulte que x 7→ ∂f
∂α

(x, α) est µ-intégrable pour tout α ∈ I .
Étudions la dérivabilité de F en α ∈ I . Soit (αn) une suite de I qui converge vers α avec αn 6= α
pour tout n. D’après le théorème des accroissements finis, on a, si x /∈ N ,

|f (x, αn)− f(x, α)| ≤ |αn − α| sup
α∈I

∣∣∣∣∂f∂α(x, α)

∣∣∣∣ ≤ |αn − α| g(x).

On peut donc appliquer le théorème de convergence dominée à la suite (hn)n∈N où la fonction hn est
définie sur E par

hn(x) =
f (x, αn)− f(x, α)

αn − α
.

Cette suite (hn)n∈N converge simplement sur E\N vers la fonction x 7→ ∂f
∂α

(x, α). Cette fonction est
donc µ-intégrable. De plus, on a

∫
∂f

∂α
(x, α)µ(dx) = lim

n→∞

∫
f (x, αn)− f(x, α)

αn − α
µ(dx) = lim

n→∞

f (αn)− F (α)

αn − α
.

Il en résulte que F est dérivable en α de dérivée
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F ′(α) =

∫
∂f

∂α
(x, α)µ(dx)
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Chapitre 7
Espaces Lp et Lp

Dans toute la suite K désignera indifféremment le corps des réels ou le corps des complexes.

Définition 7.0.1. Pour tout réel p > 0, on définit

LpK(E,A, µ) =

{
f : (E,A)→ (K,B(K)) mesurable,

∫
E

|f |pdµ < +∞
}

On utilisera en général la notation L1
K(µ).

Exemple 7.0.1. Si m désigne la mesure de comptage sur ( N,P(N) ), alors

LpK(m) = lpK(N) =

{
(an)n∈N ,

∞∑
n=0

|an|p < +∞

}
.

Proposition 7.0.1. Pour tout p,L1
K(µ) est un K-e.v.

Démonstration. On vérifie que LpK(µ) est un s.e.v. du K - e.v. des fonctions mesurables de E dans K.
Il est immédiat que la fonction nulle appartient à LpK(µ). Soit λ ∈ K et f, g ∈ LpK(µ). Les majorations

|λf + g|p ≤ (|λ||f |+ |g|)p ≤ (2 max(|λ||f |, |g|))p ≤ 2p|λ|p|f |p + 2p|g|p

assurent que λf + g est µ-intégrable.
Proposition 7.0.2. 1. Si µ(E) < +∞, alors

0 < p ≤ q =⇒ LqK(µ) ⊂ LpK(µ)

2. Si m est la mesure de comptage sur (N,P(N)), alors

0 < p ≤ q =⇒ lpK(N) ⊂ lqK(N).

Démonstration. 1) Si 0 < p ≤ q, alors |f |p ≤ |f |q1{|f |≥1} + 1{|f |≤1}. Ainsi, dès que f ∈ LpK(µ),

∫
|f |pdµ ≤

∫
|f |qdµ+ µ({|f | ≤ 1}) < +∞

45
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2. Si 0 < p ≤ q, et (an)n∈N ∈ l
p
K(N) alors limn an = 0. Il existe donc n0 ∈ N tel que pour tout

n ≥ n0, |an| ≤ 1. Ainsi, pour tout n ≥ n0, |an|q ≤ |an|p, d’où
∑

n≥0 |an|
q < +∞.

Remarque Sur (R,B(R)) muni de la mesure de Lebesgue λ, on remarque que

x 7→
1]0,1](x)√

x
∈ L1(λ)\L2(λ) et x 7→ 1√

x2 + 1
∈ L2(λ)\L1(λ).

Il n’existe donc pas d’inclusion entre L1(λ) et L2(λ).

Pour toute fonction f : (E,A)→ K et pour tout réel p > 0, on définit la quantité

‖f‖p =

(∫
E

|f |pdµ
)1/p

∈ R+

avec la convention (+∞)1/p = +∞.
Théorème 7.0.3. (Inégalité de Hölder). Soient f, g : E → K et p, q > 1 tels que 1/p+ 1/q = 1 (on
dit que p et q sont conjugués).

1. Si f et g sont à valeurs dans R+alors (dans R+)

0 ≤
∫
fgdµ ≤ ‖f‖p‖g‖q

En outre, lorsque ‖f‖p et ‖g‖q sont finis, l’inégalité est une égalité si et seulement si il existe
(α, β) ∈ R2

+\{(0, 0)} tel que αf p = βgqµ− p.p.
2. Si f ∈ LpK(µ) et g ∈ LqK(µ) alors fg ∈ L1

K(µ) et

‖fg‖1 ≤ ‖f‖p‖g‖q

En outre, l’inégalité est une égalité si et seulement si il existe (α, β) ∈ R2
+\{(0, 0)} tel que

α|f |p = β|g|qµ− p.p.

Démonstration. Commençons par établir une inégalité utile dans la suite. On pose pour tout
α ∈]0, 1 [ et tout x ∈ R+, ϕα(x) = xα − αx. La fonction ϕα est dérivable sur R∗+ et
ϕ′α(x) = α (xα−1 − 1). Par suite, ϕ′α < 0 sur ]1,+∞ [ et ϕ′α > 0 sur ]0, 1 [ . Donc, pour tout x ∈ R+,
ϕα(x) ≤ ϕα(1) avec égalité ssi x = 1. En reformulant, xα ≤ αx+ 1− α avec égalité ssi x = 1. En
posant x = u/v avec u ≥ 0 et v > 0, il vient

uαv1−α ≤ αu+ (1− α)v avec égalité ssi u = v (7.1)

Remarquons que cette inégalité est encore vraie pour u, v ∈ R+.
Revenons à présent à la preuve de l’inégalité de Hölder. Si ‖f‖p ou ‖g‖q est nulle, alors f ou g est
nulle µ− p.p. et il en est de même pour fg. Dans ce cas, l’inégalité est triviale. C’est encore le cas si
‖f‖p ou ‖g‖q vaut +∞. Supposons donc que ces deux quantités sont strictement positives et finies.
On pose alors

α =
1

p
, d’où 1− α =

1

q
, u =

fp

‖f‖pp
et v =

gq

‖g‖qq
.
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D’après l’inégalité (7.1),

fg

‖f‖p‖g‖q
≤ 1

p

fp

‖f‖pp
+

1

q

gq

‖g‖qq

En intégrant cette relation par rapport à µ, il vient

0 ≤
∫
fgdµ ≤ ‖f‖p‖g‖q

(
1

p

∫
fp

‖f‖pp
dµ+

1

q

∫
gq

‖g‖qq
dµ

)
= ‖f‖p‖g‖q

L’égalité a lieu ssi f/‖f‖p = g/‖g‖qµ-p.p.
Corollaire 7.0.1. Si µ est une mesure de probabilité, l’application r 7→ ‖f‖r est croissante.
Théorème 7.0.4. (Inégalité de Minkowski). Si p ≥ 1, alors, pour tous f, g ∈ LpK(µ),

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

L’égalité a lieu ssi
−f = 0µ− p.p. ou g = αfµ− p.p., pour un α ≥ 0 si p ≥ 1.
−f = 0µ− p.p. ou fḡ ≥ 0µ− p.p. si p = 1.

Démonstration. Si ‖f + g‖p = 0, l’inégalité est triviale. Sinon, on intègre par rapport à µ l’inégalité

|f + g|p ≤ |f ||f + g|p−1 + |g||f + g|p−1 avec la convention x0 = 1 pour x ≥ 0

On obtient alors

‖f + g‖pp ≤
∫
|f ||f + g|p−1dµ+

∫
|g||f + g|p−1dµ

Si p = 1, l’inégalité est établie. Sinon, l’inégalité de Hölder assure que (puisque (p− 1)q = p )

∫
|f ||f + g|p−1dµ ≤ ‖f‖p

(∫
|f + g|(p−1)qdµ

)1/q

= ‖f‖p‖f + g‖p/qp

Ainsi,

‖f + g‖pp ≤ (‖f‖p + ‖q‖p) ‖f + g‖p/qp

Il ne reste plus qu’à simplifier par ‖f + g‖p/qp qui est strictement positif et à remarquer que
p− p/q = 1 pour obtenir l’inégalité souhaitée.

Remarque. Ainsi, ‖ · ‖p est une semi-norme sur l’espace LpK(µ). Pour que ce soit une norme, il
faudrait que ‖f‖p = 0 implique f = 0, ce qui est faut puisque la nullité de ‖f‖p implique seulement
f = 0µ-p.p.

Il existe une façon simple de construire un espace vectoriel normé à partir de Lp et ‖ · ‖p : il suffit de
quotienter Lp par la relation d’équivalence f ∼ g ssi f = gµ-p.p.
Définition 7.0.2. On pose LpK(µ) = LpK(µ)\ ∼. L’espace LpK(µ) muni de l’application ‖ · ‖p est un
K-espace vectoriel normé.
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On commet l’abus bien pratique d’identifier une fonction à sa classe d’équivalence.
Théorème 7.0.5. Pour tout p ≥ 0, l’espace vectoriel normé ( LpK(µ), ‖ · ‖p ) est complet.
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