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Chapitre

Ensembles et théorie des cardinaux

1.1 Ensembles

1.1.1 Suites de parties d’un ensemble

Nous allons définir ici les notions de limite, limite supérieure et limite inférieure d’une suite de
parties. Soit ( A,, ) une suite de parties de .

Définition 1.1.1. On rappelle que la suite ( A,, ) est dite croissante (resp. décroissante) lorsque pour
tout entier n, A, C A, 11 (resp. A1 C A, ). Dans ce cas, la limite de la suite ( A, ) est définie
naturellement comme la réunion (resp. l'intersection) de tous les A,, :

lim A, = U A, | resp. m A,

n—oo

Par analogie avec le cas réel, on notera cette limite lim 1 (resp. lim | ) pour faire référence au fait que
la suite ( A,, ) est croissante et que la limite est donc la réunion (resp. I’intersection) de tous ses
éléments.

Définition 1.1.2. On définit les deux parties de E suivantes :

lim sup A4, <0u lim An> = lim | UAk :ﬂ U Ay,

Nn—300 n—00 n—00
k>n n k>n

out la notation lim | fait référence au fait que la suite (U >n Ak)n est décroissante, si bien que sa
limite existe toujours (et est intersection de tous ses éléments, ce qu’indique la derniere égalité) ;

lim inf A, (ou lim An) = lim 1 A=) 4

n—oo k>n n k>n

out la notation lim 1 fait référence au fait que la suite (ﬂk>n Ak)n est croissante, si bien que sa limite
existe toujours (et est la réunion de tous ses éléments, ce qu’indique la derniere égalité).

Remarque 1.1.1. Remarque 1.14 On peut aussi caractériser la limite supérieure et la limite
inférieure par les assertions suivantes : pour tout v € FE,
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6 CHAPITRE 1. ENSEMBLES ET THEORIE DES CARDINAUX

x € limsup A, & Vnik > n,z € A,

n—oo
< {n:x € A,} estinfini.
x € liminf A,, & InVk > n,z € A

n—oo
s {n:x ¢ A,} estfini.
Noter que liminf, A, C limsup,, A,.

Définition 1.1.3. On dit que la suite (A,,) converge si liminf, A, = limsup,, A,. Lorsque c’est le
cas on définit lim,, A,, := liminf,, A,, = limsup,, A,.

Remarque Soit A la limite d’une suite ( A,, ) qui converge. Alors A est caractérisée par :

VreA dng Yn>ng z€ A,
Ve¢ A dIng Vn>ny x¢ A,

Exercice Montrer les deux égalités suivantes

limsup A, =° (limninf An>

n

liminf €A, = ¢ (lim sup An) )

n

1.1.2 Fonctions et fonctions indicatrices

Définition 1.1.4. On appelle indicatrice ou fonction indicatrice de la partie A, et I’on note ¥ 4, la
fonction
Wi E—{0,1}

R 0 si z¢A
. 1 si z€A

Noter que ., =1 — W 4.
Proposition 1.1.1. Au sens de la convergence simple,

limkF,, =K lim
n lim,, Ap

et

h—mn'HéAn = WhﬂnAn

Dém. Pour tout z € F,

ImW,y, (z) =1 Vndk >n K, (z) =1
S Vndk >n,x € A
&z €elimA,

@HélimnAn(x) =1.
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Lautre assertion se démontre de la méme maniere, ou alors en se servant de 1’assertion précédente :

limhy, =lim (1 - <.,,) =1-lmi,, =1-Wg =1 Wun, 4,) =Fim, 4.,

n

ce qui acheve la démonstration.

Remarque Conséquence de cette proposition : la suite de parties (A,,) converge ssi la suite de
fonctions (} 4, ) converge simplement (et lorsque c’est le cas, la convergence a lieu vers ¥y, 4,, )-

1.1.3 les formules de Hausdorff

Proposition 1.1.2. Pour tous I et J ensembles d’indices non vides, pour toute famille (A;),_, de
parties de I et pour toute famille (Bj)jeJ de parties de F, pour toute fonction f : E — F,

() -y
f (ﬂA) C Of(Ao

avec égalité si f est injective ;

et pour tout B C F,

1.2 Cardinaux, équipotence, dénombrabilité

1.2.1 Définitions

Définition 1.2.1. Deux ensembles E et I sont dits équipotents, ou avoir méme cardinal, ou encore
méme puissance, s’il existe une bijection de ’un sur I’autre. On note alors Card(E) = Card(F).
Définition 1.2.2. On notera Card(E) < Card(F) s’il existe une injection de E dans F, c’est-a-dire
si £ a méme puissance qu’une partie de F'. Si de plus E et F' n’ont pas méme puissance, on notera
Card(E) < Card(F).

Exemples 1.2.1. Quelques exemples d’équipotences :

- Les ensembles P(E) et {0,1}F (= ensemble des applications : E — {0, 1} ) sont équipotents car
Uapplication A — W¥ 4 est une bijection de ’'un sur ’autre ;

- les ensembles N et 2N (entiers pairs) sont équipotents car [’application n — 2n est une bijection de
Uun sur ’autre ;
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- les ensembles N et N x N sont équipotents car on peut bien énumérer de maniere injective les
couples d’entiers (par exemple en suivant les points des droites d’équation y = —x + ¢, lorsque c
croitdans N );

- par récurrence, N est équipotent avec tous les produits cartésiens du type NP(p € N* ).
Théoréme 1.2.1. (théoréme de Cantor-Bernstein, admis) Si Card (E;) < Card (E») et

Card (E,) < Card (E,), alors Card (E;) = Card (Es).

Remarque La relation < est une relation d’ordre. En effet elle est

1. réflexive : il existe une injection de £ dans F (I’injection canonique, c’est-a-dire ici 1’identité),
donc Card(F) < Card(FE);

2. antisymétrique, grace au théoreme de Cantor-Bernstein ;

3. transitive : si Card (F;) < Card (Es) et Card (Ey) < Card (F3), alors il existe une injection

f1: E1 — E5 etune injection f5 : Fy — Ej, donc il existe une injection f3 : By — FE3 quin’est
autre que... fy o f1, par conséquent Card (F;) < Card (Ej3).

Proposition 1.2.1. Card(F) < Card(P(FE)).

Dém. Soit f : F — P(FE). Montrons que f ne peut étre surjective (et donc ne peut étre bijective). Soit

Q={xeE:z¢ f(x)}.

Montrons que par I’absurde que 2 ne peut avoir d’antécédent par f. Si 3z € F tel que f(z) = (2 alors
- soit z € Qalors z ¢ f(z), c’est-a-dire z ¢ €2 ; - soit z ¢ Q alors z € f(z), c’est-a-dire z € €2, ce qui
constitue une contradiction. D’autre part il existe clairement une injection de £ dans P(FE), par
exemple celle qui a x associe {z}.

Définition 1.2.3. On définit les notions d’infini et de dénombrable comme suit :

- E est dit infini s ’il existe vy € E et une injection de E dans E\ {x}, et est dit fini sinon ;

- E est dit dénombrable si Card(E) < Card(N);

- E est dit infini dénombrable si Card(F) = Card(N) ;

- E est dit (infini) non dénombrable si Card(E) > Card(N);

- une partie A de E est dite cofinie si “A est fini.

Remarque L’ensemble N est (bien!) infini car par exemple 1’application

f:N— N*
n—n-+1

est bien une injection.
Définition 1.2.4. Card(N) est souvent noté Xy( " aleph zéro » ).
Proposition 1.2.2. E est infini ssi Card(E) > Card(N)

1.2.2 Cardinaux classiques et propriétés

Proposition 1.2.3. Les ensembles 7., NP (p € N*) et Q sont dénombrables.

Dém. On a déja vu que NP était équipotent a N. Pour ce qui est de Z, la fonction

f:Z—N

NN —2n si n<0
2n—1 st n>0
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est une bijection. Enfin, rappelons que pour tout x € Q*,3!(p, q¢) € Z* x N* tel que = = p/q et
p A g = 1. Ainsi la fonction qui a 0 associe (0, 1) et qui est définie sur Q* par

f:QF — Z x N*
p/qa— (p,q)
est une injection de Q dans Z x N*, donc Card(Q) < Card (Z x N*). Or il existe une injection
g : Z — N, donc I’application qui a ( z, 3 ) associe ( g(),y ) est une injection de Z x N* dans N2, ce

qui montre que Card (Z x N*) < Card (N?) = Card(N), donc Card(Q) < Card(N).
Proposition 1.2.4. Toute réunion dénombrable d’ensembles dénombrables est dénombrable.

Dém. Soit ¥ = UneN E,,, ou pour tout n € N, F,, est dénombrable. Alors par définition, pour tout
n € N il existe une injection ¢,, : E,, — N. Pour tout x € E on définit alors

N(z) :==min{n>0:2z € E,} < cc.

Alors la fonction

¢ E — N?
T — (N(:r;), ‘PN(w)(I»
est une injection car pour tous z,y € F tels que ¢(z) = ¢(y), ona N(x) = N(y) =: n puis
ON(@) (T) = on) (Y), ¢’ est-a-dire ¢, (z) = ¢, (y), donc = = y, puisque ,, est injective. Par

conséquent, Card(E) < Card (N?) = Card(N).
Proposition 1.2.5. Tout produit cartésien fini d’ensembles dénombrables est dénombrable.

Dém. Pouri = 1,.. . n, soit F; dénombrable et une injection ; : F; — N. Alors la fonction

QZS : H?:1Ei — N"
(1, ooy xn) — (1 (21) - o on (T0))
est clairement injective donc Card (II; £;) < Card (N") = Card(N).

Proposition 1.2.6. Tout produit cartésien infini dénombrable d’ensembles non vides (méme finis) est
non-dénombrable pourvu qu’une infinité d’entre eux ne soient pas réduits a un singleton.

Dém. Admettons pour simplifier que pour tout i € N, Card (E;) > 2. Alors pour tout i, il existe une
injection ¢; : {0, 1} — E;. Donc I’application

¢:{0,1N — By x By x -
(xo, 21, ...) — (o (x0) , 1 (21),-..)

est injective, donc Card (II; E;) > Card ({0, 1}") = Card P(N) > Card(N).
Théoréme 1.2.2. Les ensembles R et P(N) sont équipotents.
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Chapitre 2

Tribus

2.1 Définitions

Soit £ un ensemble. On appelle classe de parties de £ un sous-ensemble non vide de P(FE).
Définition 2.1.1. Définition 1.1.1. Une tribu A sur E est un sous-ensemble non vide de P(F) tel que :
(i) la partie vide appartient a A,

(ii) le complémentaire d’un élément de A est dans A,

(iii) A est stable par réunion dénombrable.

Notons immédiatement quelques propriétés satisfaites par les tribus. Si A est une tribu alors - F € A,

— A est stable par intersection dénombrable,

— Aest stable par différence : A, B € A = A\B € A,

— A est stable par différence symétrique : A, B € A = AAB € A.

Exemple 2.1.1. La plus petite tribu de E est A = {(), E'}, tandis que la plus grande est P(E).
Définition 2.1.2. On appelle espace mesurable tout couple ( E, A ) formé par un ensemble E et une
tribu A sur E.

Proposition 2.1.1. L’intersection de tribus sur E est encore une tribu.

Démonstration. Soit (.A;),., une famille de tribus sur £. Notons A = M;c1.A; I'intersection de ces
tribus. Alors, I’ensemble vide appartient a chaque tribu .4; et donc a A. Soit A € A. Pour tout
1e€l,Ae A;donc A° € A; : A° € A. Laréunion dénombrable s’établit de méme.

Proposition 2.1.2. (tribu engendrée). Soit € un sous-ensemble de P(E). Il existe une plus petite tribu
(au sens de 'inclusion) contenant tous les éléments de E. Elle est appelée tribu engendrée par £, et
est notée o (&).

Démonstration. Soit X’ I’ensemble de toutes les tribus M sur £ contenant £. L’ensemble X n’est
pas vide puisqu’il contient la tribu P(E). Posons

A= [\ M={ACEVMe X Ac M}

Mex

Il est clair que £ C A. De plus, A est une tribu comme intersection (quelconque) de tribus et, par
définition, elle est contenue dans toute tribu contenant £.

Remarque. Si A est un sous-ensemble de F, alors

11
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oc({A}) ={0,A, A% E}

Remarque Si A est une tribu sur £, alors o(A) = A.
Proposition 2.1.3. (image réciproque d’une tribu). Soit E et F' deux ensembles, f une application de
E dans F et A une tribu sur F'. Alors

FHA) ={f1(4), AecA}

est une tribu sur E, appelée tribu image réciproque de A par f.

Démonstration. La classe f~1(.A) contient I’ensemble vide puisque ) = f~1(0). Soit B € f~(A).
Alors il existe A € Atel que B = f~!(A). Puisque A est une tribu, A° € A. Enfin, remarquons que
f7YHA)e = f~1(A°). La stabilité par réunion dénombrable s’établit de méme.

Proposition 2.1.4. Soit [ une application de E dans F, E un sous-ensemble de P(F). Alors

fHo&) =0o (7€)
En d’autres termes, 'image réciproque de la tribu engendrée par £ est la tribu engendrée par
I’image réciproque de &.

Démonstration. Comme £ C (&), ona f~1(E) C f~1(c(E)) qui est une tribu et ainsi o (f~1(£))
est inclus dans f~!(a(&)).

Montrons I’inclusion inverse. Notons B I’ensemble des parties B C F telles que f~!(B) appartienne
ao(f~1(&)). Alors B est une tribu. De plus, B contient £ donc contient o(&). Il en résulte que

[ He(€)) C f~1(B). Comme, par définition, f~1(B) C o (f~*(£)), on obtient I'inclusion
souhaitée : f~1(a(&)) C o (f7H(E)).

Définition 2.1.3. (tribu induite). Soit B un sous-ensemble de I et A une tribu sur E. On appelle
tribu trace, ou tribu induite, par A sur B la tribu

Ag={ANB,Ae A}

Définition 2.1.4. (tribu produit). Soit A une tribu sur E et B une tribu sur F'. On appelle tribu
produit, et I’'on note A ® B, la tribu sur E X I engendrée par I’ensemble des parties de E X F qui
s’écrivent sous la forme A x B avec A € Aet B € B.

2.2 Tribu borélienne
Rappelons que pour la topologie usuelle de R, un ensemble O de R est ouvert si

Ve € O,3a,b € O,z €la,b[C O.

On note O I’ensemble des ouverts de R.
Soit O un ouvert de R. Notons

I={(p,r) €QxQ%,]p—rrho+r[C O}

Alors I est dénombrable et
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0= Jlp—rp+rl
(

pr)el

On voit ainsi que tout ouvert de R peut s’écrire comme réunion dénombrable d’intervalles ouverts (on
peut mé€me se limiter a des intervalles a extrémités rationnelles).

Définition 2.2.1. La tribu o(O) engendrée par O est appelée la tribu borélienne de R. On la note
B(R). Ses éléments sont appelés les boréliens.

Remarque Méme si cela n’est pas évident, on peut montrer que B(R) est strictement inclus dans
P(R) : il existe des parties de R qui ne sont pas boréliennes.
Proposition 2.2.1. Sur R, muni de sa topologie usuelle, la tribu borélienne est engendrée par

1. la classe des intervalles ouverts bornés,
2. la classe des intervalles de la forme | — 0o, a[ avec a € R,

3. la classe des intervalles de la forme | — 0o, a] avec a € R,

Démonstration. Prouvons le point 1 . Notons £ la classe des intervalles ouverts bornés. On a

E C O,donc o(&) C o(O). D’autre part, tout ouvert de O est réunion finie ou dénombrable
d’intervalles ouverts bornés, d’ou O C (&) et par suite 0(O) C o(&).

Prouvons le point 2. Soit £’ la classe des intervalles de la forme | — 0o, a [.Ona o (£') C o(O).
Pour établir I’inclusion inverse, il suffit de montrer que £ C o (£’) (puisque la tribu engendrée par £
est la tribu borélienne). Soit |a, b[€ £. On a

la, b[ =] — o0, b[N]a, +oo]=]| — 0o, b[N] — 00, al°
=] — 00, b [N (Npen+] — 00,a + 1/n])¢ € o (&)

Tout intervalle ]a, b [ appartient donc a la tribu engendrée par £’ et donc o (&) C o (£').

Le point 3 s’établit de maniere analogue.

Remarque Nous aurons aussi & considérer la droite achevée R = R U {400} U {—o0}. Rappelons
que sa topologie est définie par la base d’ouverts formés des intervalles ouverts de la forme

la, bl]a, , +o0o] et [~o0, b] avec a, b € R. On démontre de fagon analogue que la tribu borélienne de R
est engendrée par les classes {[—o0, a[,a € R} ou {[—00, a],a € R} par exemple.

Proposition 2.2.2. La tribu borélienne de R? est égale a la tribu engendrée par la classe des ouverts
de la forme

d
H]ai,bi[ avec 00 < a; < b; < +00
i=1

Il existe une notion d’espace topologique abstrait. Rappelons que O C P(FE) est une topologie
(I’ensemble des ouverts) sur £ si

(i) @ et E appartiennent a O,

(i1) O est stable par intersection finie,

(iii) O est stable par réunion quelconque.

Il est naturel de munir un espace topologique ( £, O ) (ot O désigne I’ensemble des ouverts de F)
d’une tribu compatible en un certain sens avec la structure topologique préexistante.

Proposition 2.2.3. Soit ( E, O ) un espace topologique. La tribu o(Q) engendrée par O est appelée
la tribu borélienne de E. On la note B(E). Ses éléments sont appelés les boréliens.
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Chapitre

Applications mesurables

3.1 Définitions et criteres de mesurabilité

Définition 3.1.1. Soit ( E, A ) et ( F, B ) deux espaces mesurables et [ une application de E dans F.
On dit que f est mesurable de ( I, A ) dans ( F, B ) si I’image réciproque par f de tout élément de B
est un élément de A. On dira plus simplement que f est mesurable s’il n’y a pas d’ambiguité sur les
tribus considérées.

Autrement dit, | est mesurable si f~1(B) C A. Lorsque E et F sont des espaces topologiques et A et
B désignent leurs tribus boréliennes respectives, une application mesurable est encore appelée
borélienne.

Exemple 3.1.1. Soit (E, A) un espace mesurable. Pour toute partie A de E on note 14 la fonction
indicatrice de I’ensemble A (valant I sur A et 0 sur son complémentaire). La fonction 1 4 est
mesurable de ( E, A ) dans R (muni de sa tribu borélienne) si et seulement si A € A.

Proposition 3.1.1. Soit (E, A) et (F, B) deux espaces mesurables, f une application de E dans F et
E une classe sur F telle que o(E) = B. Alors f est mesurable si et seulement si ’image réciproque
de tout élément de € appartient a A.

Démonstration. La condition est évidemment nécessaire. Réciproquement, si A contient 1’image
réciproque de &, elle contient également la tribu engendrée par I’image réciproque de £ qui est encore
I’image réciproque de la tribu engendrée par £, c’est-a-dire I’image réciproque de 3 par hypothese.
Corollaire 3.1.1. Soit E et F' deux espaces topologiques munis de leurs tribus boréliennes
respectives. Toute fonction continue f de E dans F' est mesurable.

Démonstration. Soit O (resp. Of ) la classe des ouverts de F (resp. de F' ). Par définition de la
continuité de f,ona f~!' (Or) C Or C B(E). La tribu borélienne B(FE) de E contient donc

o (f1(Op)) = f1(c(OF)) = fH(B(F)) et f est mesurable.

Corollaire 3.1.2. Soit [ une application mesurable de ( E, A ) a valeurs dans R muni de sa tribu
borélienne. Alors f est mesurable si et seulement si [’'une des conditions suivantes est vérifiée :
()Vae R, {x € E, f(x) <a} € A

(ii)Va e R{z € E, f(z) <a} € A

(iii)Va € R, {x € E, f(x) > a} € A,

(iv)Va e R {z € E, f(x) > a} € A

Démonstration. En effet, I’'une quelconque des classes suivantes de parties de R

| —o0,a[;a € R};  {] —o0,a];a € R}; {Ja, +oo[;a € R}, {[a, +oo[;a € R}

15
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engendre la tribu borélienne de R.

3.2 Propriétés de stabilité

La mesurabilité est stable par composition.

Proposition 3.2.1. Soit (E, A), (F,B), (G,C) trois espaces mesurables, [ une application mesurable
de (E, A) dans (F, B) et g une application mesurable de (F, B) dans (G, C). Alors Iapplication f o g
est mesurable de ( E, A ) dans ( G,C ).

Proposition 3.2.2. Soit (Fy, By) et (Fy, Bs) deux espaces mesurables et py et py les projections de

Fy X Fy sur F et F, respectivement. On munit Fy X Iy de la tribu produit B; ® Bs.

(i) les projections p;, et p, sont mesurables ;

(ii) soit ( E, A ) un espace mesurable et [ une application de E dans Fy x Fs. Alors [ est mesurable
si et seulement si les composées pyo f : EE— Fyetpyo [ : E — Fy sont mesurables.

Démonstration. Prouvons le point (i). Pour tout By € By,onap;* (B;) = By x Fy € B; ® B,. Donc
p1 est mesurable. On procede de méme pour ps.

Prouvons le point (i7). Si f est mesurable, il est clair que p; o f et ps o f le sont. Réciproquement,
supposons que p; o f et py o f soient mesurables. Alors, pour tout B; € B, ’ensemble

f7Y(B; x Fy) n’est autre que (p; o f)f1 (B1) qui appartient a . A. De mé€me, pour tout B, € By, on a
/71 (F) x By) appartient a \A. Il en résulte que

fil (Bl X BQ) = fil ((Bl X FQ) N (Fl X Bg)) = fil (Bl X FQ) N fil <F1 X BQ) cA

Comme B; ® B est la tribu engendrée par les parties de la forme B x Bs, avec By € By et By € Bs,
la proposition 2.1.3 permet de conclure que f est mesurable.

Corollaire 3.2.1. Pour qu’une fonction a valeurs complexes soit mesurable, il faut et il suffit que ses
parties réelle et imaginaire soient mesurables. Si f et g sont des fonctions mesurables de ( E, A )
dans C, alors [ + g, fg,|f|, ... sont mesurables.

Avant d’étudier la stabilité de la notion de mesurabilité par passage a la limite, rappelons quelques
définitions concernant les suites a valeurs dans R.

Définition 3.2.1. Soit (u,,),, . une suite a valeurs dans R. La plus grande (resp. petite) valeur
d’adhérence de la suite (uy,), est notée limsup u,, ( resp liminf u,). Leurs définitions sont données
par

limsupu, = inf supuy, et liminfwu, = sup inf uy.
n20 g>n n>0 k2n

Remarque Les limites supérieure et inférieure sont a priori des éléments de R.

Remarque On a toujours lim inf u,, < limsup,, u,, et la suite (uy), . converge si et seulement si
lim inf u,, = lim sup,, uy,.

Remarque Si (f,), estune suite d’applications de E dans R, on note lim sup f, la fonction qui &
x € F associe limsup f,(z) € R.

Proposition 3.2.3. La mesurabilité est stable par passage a la limite.

(i) Soit (fn),,cx une suite de fonctions mesurables sur (E, A) a valeurs dans R. Les fonctions

sup fy,inf f,, limsup f, et liminf f,, sont mesurables.

(ii) Soit (fy),,cn une suite de fonctions mesurables sur (E, A) a valeurs dans C telle que, pour tout
x € E, la limite lim,, f,(z) = f(x) existe. Alors f est mesurable.
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Démonstration. Etablissons tout d’abord le point (i). Par hypothése, pour tout a € R, I’ensemble
{fn < a} appartient a A. Or,

{sup fu < a} =({fu < a}

D’apres le corollaire , sup f,, est mesurable. Comme inf f,, = — sup (—f,,) , inf f,, est mesurable.
Enfin, lim sup f,, = inf,, (supkz” fk) et liminf f,, = sup,, (infx>, fx) sont mesurables d’apres ce qui
précede.

Pour prouver le point (ii), quitte a considérer les parties réelle et imaginaire des fonctions f,,, on peut
supposer que f,, est réelle. Mais alors f = lim inf f,, = lim sup f,, est mesurable d’apres (i).
Proposition 3.2.4. Soit f et g deux applications mesurables de ( E, A ) dans R, (muni de sa tribu
borélienne). Alors {f < g} et {f < g} sont des éléments de A.

Démonstration. En décomposant ces ensembles de la fagon suivante :

{f <9} =Ugeolf <a< g} =Uea{f <q} N{g < g})
{f<gt =Nui{f <g+1/n}

on obtient leur appartenance a la tribu \A.

3.3 Approximation des fonctions mesurables

L’objet de ce paragraphe est d’établir un résultat d’approximation relativement élémentaire mais
fondamental pour la construction de I’intégrale de Lebesgue : toute fonction mesurable a valeurs dans
R est limite croissante de fonctions élémentaires, appelées fonctions étagées.

Définition 3.3.1. On notera M (resp. M) I’ensemble des fonctions mesurables (resp. mesurables
positives) sur ( E, A ) a valeurs dans R ( respR.).

Définition 3.3.2. Une fonction mesurable sur (E, A) a valeurs dans C est dite étagée si elle prend
seulement un nombre fini de valeurs distinctes. On notera £ (resp. £ ) I’ensemble des fonctions
étagées sur (E, A) a valeurs dans R (resp. C).

Une fonction étagée ne peut prendre que des valeurs finies (dans C ) contrairement aux fonctions
mesurables 2 valeurs dans R. Soit f une fonction étagée et n le nombre de valeurs distinctes prises
par f. Notons a, ..., a, ces valeurs et posons, pour i = 1...,n, A; = {f = «;}. Alors les parties
(A;) i=1,..n SONt mesurables et f peut encore s’écrire

f= Z a;ly,
i=1

Réciproquement, toute combinaison linéaire a coefficients réels ou complexes de fonctions
caractéristiques d’ensembles mesurables est une fonction étagée. Remarquons de plus que les
fonctions étagées sur(F£, A) forment un espace vectoriel.

Théoreme 3.3.1. Soit f une fonction mesurable sur ( E, A ) a valeurs dans R... Il existe une suite
croissante (f,,), cy de fonctions étagées positives qui converge simplement vers f. De plus, la
convergence est uniforme sur tout ensemble B € A sur lequel | est bornée.
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Démonstration. Pourn € Net k= 0,2,...n2" — 1, posons

A, ={f>n} et A= {Qn_f k+1}

On définit alors la fonction f,, par :

fn = Z on Lan, T nla,

k=0

Par définition, f,, est une fonction étagée positive telle que f,, < f. D’autre part, on vérifie que si
YRS An,ka

f”H( ) {fn(m) i 2n+1 < f($) gﬁﬂ

fn(x) 2n+1 312111 < f(x) 212111)

De méme, six € A,

frn(2) {n—l—l si f(z) >n+1
n+1\T) =

n—i—# sin+2n%Sf(x)<n+2lj+11,0§l§2”+l—l

Ainsi, pour toutn € Nettout x € E, f,(z) < foi1(x) : 1a suite (f,,) est croissante.
De plus, (A,),, est une suite décroissante d’éléments de A donc si z € A, , alors pour tout
n > ng,x € AY ou encore

0 < f(z) = fulz) < 2i

Ceci implique que (f,(x)), converge vers f(z). Ainsi, la suite ( f,,) converge sur I’ensemble U, A¢,
qui n’est autre que {f < +o00}.

D’autre part, si © € {f = +o0} alors, pour tout n € N, f,,(x) = n qui tend vers +o0o quand n tend
vers +00.

Soit a présent B € A tel que f soit bornée sur B. Il existe n; tel que, pour tout = € B, f(x) < n;.
Alors BN A, = 0 et ainsi,

1
Vn >n,Ve e B, 0< f(x)— fu(z) < on

La convergence est donc bien uniforme sur 5. _
Corollaire 3.3.1. Toute fonction f mesurable sur (E, A) a valeurs dans R (ou C ) est limite simple
d’une suite ( f,, ) de fonctions étagées a valeurs dans R (ou C ).

Démonstration. Si f est a valeurs dans R, on peut I’écrire f = f+ — f~avec f* = sup(f,0) et

f~ = —inf(0, f). Comme f*et f~sont mesurables a valeurs dans R, il existe des suites (g,,) et (h,,)
de fonctions étagées positives tendant simplement vers fTet frespectivement. La suite ( f,, ), ol

fn = gn — h,, est formée de fonctions étagées et converge simplement vers f. Si f est a valeurs
complexes, on I’écrira comme combinaison de ses parties réelle et imaginaire.



Chapitre I

Mesures positives

4.1 Définitions et propriétés élémentaires

Définition 4.1.1. Soit ( E_,A ) un espace mesurable. On appelle mesure positive sur ( E, A ) une
application p de A dans R, telle que
(i) p(0) =0,

(ii) si (Ap),,cn €St une suite d’éléments deux a deux disjoints d’éléments de A, alors

% (UnAn) = Z 1% (An)

On peut parfois préciser le terme de mesure positive

— Si u(E) < +o0, on dit que la mesure |1 est finie (ou bornée).

— Si u(E) = 1, la mesure 1 est appelée mesure de probabilité.

— Sil existe une suite (Ay),, oy d’éléments de A telle que U, A,, = E et, pour toutn € N, 1 (A,) est
fini, on dit que |1 est une mesure o-finie.

Définition 4.1.2. On appelle espace mesuré tout triplet ( E, A, i ) o ( E, A ) est un espace

mesurable et | est une mesure positive sur ( E, A ).

Analysons a présent les propriétés satisfaites par une mesure en commencant par les propriétés
faisant intervenir un nombre fini d’ensembles.

Proposition 4.1.1. Soit ( E, A, i1 ) un espace mesureé.

(i) Si Ay, ..., A, sont des éléments de A deux a deux disjoints alors

P(AL UAs U UA) = p(Ay) + -+ p(An)

(ii) Si A et B sont deux éléments de A tels que A C B, alors j1(A) < u(B). De plus, si j1(A) < 400,
alors p(B\A) = u(B) — p(A).
(iii) Soient A et B deux éléments de A, n(AU B) + (AN B) = u(A) + u(B).

Démonstration. Le point (i) s’établit a partir du point (ii) de la définition d’une mesure en
choisissant Ay, = () pour k £ 1,... n.

Pour (ii), si A C B, onécrit B= AU (B\A). Comme A et ( B\ A ) sont disjoints, ;(B) est égal a
p(A) + u(B\A) = p(A).

19
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Pour établir le point (iii), distinguons deux cas. Si (A N B) = 400 alors p(A) ou p(B) vaut aussi
+00. Sinon, il faut remarquer que A U B s’écrit comme la réunion disjointe de (A\(AN B)), AN B
et B\(A N B). En utilisant le point (i), il vient :

(AU B) = p(A\(AN B)) + (AN B) + p(B\(AN B)).

Puisque A N B est bien entendu inclus dans A et dans B le point (ii) fournit le dernier argument :

(AU B) = p(A) = (AN B) + p(AN B) + u(B) — p(AN B)
= w(A) + u(B) — (AN B),

ce qui est le résultat attendu.

Donnons une définition équivalente de la notion de mesure (positive).

Proposition 4.1.2. Une application ;i de A dans R, est une mesure si et seulement si
(i) u(0) =

(ii) si A et B sont deux éléments disjoints de A, u(AU B) = u(A) + u(B),

(iii) pour toute suite croissante (By,), .\ d’éléments de A, ji (U, B,,) = lim,, 1 (B,,).

Démonstration. Supposons que les points (i), (ii) et (iii) de la proposition soient vrais. Par récurrence
sur le point (ii), on obtient que, si Ay, ..., A, sont des éléments de A deux a deux disjoints alors

p(AyUAsU---UA,) =pu(A)+ -+ pu(A,)

Soit (A,),,cy une suite d’éléments deux a deux disjoints de .A. Pour tout n € N, posons
By = U<t A,.Ona p(By) = Zﬁ:o p (Ay). De plus, (By), oy €St une suite croissante et U2 By,
coincide avec U2, A,,. Par hypothese, on obtient

(o An) = 1 (UiZoBy) = lim pi(By) = lim Z” (An) =3 p(A
k=1 k=0

Réciproquement, supposons que 4 soit une mesure. Soit (5,,),,.y une suite croissante d’éléments de
A. Posons Ay = By et, pour tout n > 1, A, = B,\B,_1 € A. Alors (A,,), .y est une suite
d’éléments de A deux a deux disjoints et, pour tout n > 0, B,, = U}'_;Aj. Il en résulte que

1 (UnoBn) = 1 (UiZoAk) ZM Ag) = hm Z/l Ag) = hm H( n) s

et la proposition est démontrée.

Proposition 4.1.3. Soit ( E, A, i1 ) un espace mesureé.

(i) Si (By),,cy est une suite d’éléments de A, alors 1 (U;2By,) < >0 o ju(By).

(ii) Si (Ap),,cy est une suite décroissante d’éléments de A telle qu’il exlste no avec (i (A, ) fini, alors
la suite (11 (Ay)),,cn converge en décroissant vers i (N, Ay).

Démonstration. Démontrons (i). Posons Ag = By et, pour tout n > 1, A, = B,,\ (Ug<,, Bx). Les
ensembles (A, ), . sont deux a deux disjoints et 55, = Uy<, Ay. Il en résulte que

1 (UnZoBn) = 1 (UZoAr) = ZM (Ar) < ZM(B
n=0
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puisque A,, C B, pour toutn € N.
Démontrons (ii). Pour i > ng, posons By, = A, \ Ax. La suite (By) k>n, €St Croissante et on a
Uksno Br = Ang \ (Mik>ng Ak ). Puisque Ng>p, A C Ay, et Ay C Ay, ona

H (Am)\ (mkznoAk)) =K (Ano) —H (mk’znoAk’) et pu (Bk) =p (Ano> —H (Ak) )

d’ou

# (Ang) = 11 (Ohzng Ar) = 1 (Uzng Br) = lim pu (By)
= lim (1 (Ang) = 1 (Ax)) = g1 (Ang) — lim g (Ay)

et donc 1% (mk21Ak) = limk_mo % (Ak)

Remarque Dans 1’énoncé (ii ), I’hypothese de I’existence d’un entier n, tel que p (A,,) est fini ne
peut étre supprimée. En effet, si u est la mesure de comptage sur Net A, = {n,n+1,...} alors
p(A,) =+ooetnN,A, = 0.

4.2 Mesures discretes

Les premiers exemples de mesures que 1’on va considérer sont a la fois élémentaires et
fondamentaux. Ils correspondent a 1’idée intuitive de masses ponctuelles : il va s agir d’affecter des
poids a des points de 1’espace.

L’exemple le plus naif consiste a affecter un poids a un seul point.
Définition 4.2.1. (Mesure de Dirac). Soit ( E, A ) un espace mesuré et a € E. Posons, pour tout
AcA:

5.(A) = 1 sia €A,
)0 siag A

L’application 0, est une mesure de probabilité, appelée mesure (ou masse) de Dirac au point a.

Remarque Si A € A, 6,(A) =14(a).

Pour montrer que J, est une mesure, utilisons par exemple la définition alternative d’une mesure
fournie par la proposition 3.1.4. 1l est clair que d, (/) est nul. Soit A et B deux ensembles disjoints
appartenant a . A. Alors

Sa(AU B) = 1aup(a) = 14(a) + 15(a) = 6,(A) + 6u(B).

Soit a présent une suite croissante (3,),, . d’éléments de A. Alors

a €U,B, <= dng >0,a € B,, <= 3dny > 0,Vn > ny,a € B,

Donc, si a € U, B, alors §, (U, B,,) = 1 et la suite (0, (B,)),,cy (& valeurs dans {0,1} ) vaut 1 a
partir d’un certain rang. De méme, si a ¢ U, B3,, alors d, (U, B,) = 0 et la suite (6, (B,)),,cy est la
suite nulle.

Définition 4.2.2. (Mesure de Bernoulli). Soit p €0, 1[. La mesure de Bernoulli de parametre p est
définie par 1 = (1 — p)dy + pdy. C’est une mesure de probabilité.
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Définition 4.2.3. (Mesures discretes). Soit (I, A) un espace mesurable. Soit (a,),, o une suite de
points de E et (o), o une suite de réels positifs. Posons pour tout A € A,

= i g, (A)
n=0

Lapplication 11 : A — R est une mesure positive. Tout point a,, tel que a,, > 0 est appelé atome de
18

Remarque Si (ay,), , oy €St une suite de nombres positifs, alors

o (o9} o0 o0
DD k=D > au
k=0 n=0 n=0 k=0

sl s . -

I’égalité ayant lieu dans R .

Montrons que ’application i = > ,0,, définie sur A est une mesure. Clairement, /(()) = 0. Soit
(Ak),cn une suite d’éléments disjoints de .A. Alors

Mg

0o
UkAk Zan an UkAk Z@nlukAk an - Zan

n=0

]‘Ak )

B
Il

0

_ZzanlAk a” Zzan an Ak gM(Ak)

k=0 n=0 k=0 n=0

Exemple 4.2.1. La mesure de Poisson de paramétre A\ > 0 est un exemple tres classique de mesure
discrete. Elle est définie par

Remarquons de plus que c’est une mesure de probabilité.

4.3 Mesure de Lebesgue

Théoreme 4.3.1. [l existe une unique mesure \ sur (R, B(R)) telle que
(i) A([0,1]) = 1,
(ii) Pour tout a € R et tout B € B(R), A\(a + B) = \(B).

Elle est appelée mesure de Lebesgue sur R.

Remarque La mesure de Lebesgue est la seule mesure invariante par translation qui affecte la mesure
1 a’ensemble [0, 1].

Cette mesure coincide avec la notion intuitive de longueur comme le montre le résultat suivant.
Proposition 4.3.1. Pour tous a < b réels,

A[a, b]) = Aa, b)) = Alla, b)) = A(Ja, b) = b —a.

Si I est un intervalle non borné alors \(I) = +o0.
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Démonstration. Soit « = \({0}). Alors, d’apres I’invariance par translation de A, pour tout = € R,
A({z}) = Mz +{0}) = A({0}) =

Ainsi, pour toutn > 1,

na = M{1/k,k=1,....n}) <A([0,1]) = 1

Ceci assure donc que o = 0. On dit que A ne charge aucun singleton. La mesure des intervalles ne
dépend pas du fait qu’ils contiennent ou non leurs extrémités (on utilisera cette remarque dans la suite
sans le rappeler systématiquement).

Soit n > 1. Découpons |0, 1] en n intervalles disjoints égaux.

1 =X([0,1]) = A(J0,1]) = A (U] (k = 1) /n, k/n])

A((k —1)/n+]0, 1/n] ) = nA([0, 1/n])

n

k=1

Ainsi, pour tout n > 1, A(]0,1/n| = 1/n.
Soit a présentn > let ky < ky € Z. Alors

k k

ko—k 2 1

Ak1/n, ka/n]) = A (Uli1 1] (kv +1—1)/n, (ks +1) /n}) =

Ainsi, pour tous rationnels r < v/, A\(Jr,7'[) = 1" — r.

Soit a < b € R. il existe deux suites (u,),, et (v,), de rationnels strictement décroissante pour la
premiere et strictement croissante pour la seconde telles que u,, < v,, pour tout n et qui convergent
respectivement vers a et b. On obtient alors

A(Ja, b)) = A (U], v,]) = liTILn AJtn, vn]) = li}ln (Up —up) =b—a.

Soit enfin I un intervalle non borné. Supposons-le de la forme [a, +o00[. Alors, pour tout n € N, [
contient [a, a + n| et ainsi, A(I) > n. Ceci assure que \(I) = +oc.
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Chapitre

Construction de I'intégrale de Lebesgue

Dans ce chapitre, on se donne un espace mesuré ( F/, A, 1 ). L’idée est de construire 1’intégrale pour
des fonctions de plus en plus générales grace a des passages a la limite.

5.1 Intégration des fonctions étagées positives

Définition 5.1.1. Soit [ une fonction étagée positive, prenant les valeurs distinctes v, . . ., a,. On
pose A; = f~1 ({ay}) pour 1 < i < n. On appelle intégrale de f par rapport a y, et on note [ fdp,
le nombre fini ou infini (élément de R, ) défini par

[ fin= Z e (Ay)

avec la convention usuelle en théorie de la mesure : 0 X oo = 0.
Proposition 5.1.1. L’intégrale de fonctions étagées positives vérifie les propriétés suivantes.
(i) Si f et g sont deux fonctions étagées positives et A € R*, alors

/(Aerg)du:A/fdqu/gdu

(ii) Si f et g sont deux fonctions étagées positives telles que f < g, alors

[ fdn< [ gd

Démonstration. Montrons la propriété (i) dans le cas ou A = 1. Le cas général s’en déduit
immédiatement. Posons

f:ZailAi et QIZBJ'IB].
=1 =1

ot les (), (resp. les (Bj)j ) sont distincts. Notons 71, . . ., les valeurs (distinctes) prises par f + g et

Co=(+9"(w= |J AnBy,

(i,9) €l

25
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ou I, = {(4,j), & + Bj = Yk }. Puisque les ensembles (4; N B;), ; sont deux a deux disjoints,

p(C) = > n(AnB).

On a donc par définition de I’intégrale de f + ¢

/(f‘i‘g)d/i:Z’qu(Ck Z Z (a; + B;) 1w (A; N By)

k=1 o 1 13 Elk
= ZZO@WE NB)+ > > Biu(AinB)
=1 j=1 j=1 i=1

_ Z it (A;) + Z Bin (Bj)

Z/fdu+/gdu

Pour établir (i7), il suffit d’appliquer (i), en remarquant que g — f est une fonction étagée positive,

pour obtenir
/fduﬁ/fdu+/(g—f)du:/(f+(g—f))du=/gdu

Ceci acheve la preuve.
Remarque Soit la fonction f = Zz a;14, ou les («; ) ne sont pas nécessairement distincts et les ( A;
) nécessairement disjoints. On a encore [ fdu = >, a;p (4;).

5.2 Intégration des fonctions mesurables positives

Définition 5.2.1. Soit f une fonction mesurable a valeurs dans R... On appelle intégrale de f par
rapport a yu, et on note [ fdy I’élément de R défini par

/fd,u = sup {/udu,u € E telle que u < f}

Remarque Si [ est une fonction étagée positive alors les deux définitions de son intégrale coincident
car le supremum est atteint pour u = f.
Proposition 5.2.1. (Croissance de ’intégrale). Pour toutes fonctions f et g mesurables positives

telles que f < g,
/ fdp < / gdp

Démonstration. C’est une conséquence immédiate de I’inclusion

{fuebusflc{ueé&iulyg}
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et de la définition de I’intégrale.

Voici le premier des grands théoréemes d’intervertion limite-intégrale qui font toute la puissance de la
théorie de la mesure.

Théoréme 5.2.1. (de convergence monotone ou de Beppo Levi). Soit ( ), oy une suite croissante de
M. Alors [ = lim,, f, (= sup,, f.) est aussi dans M et

/fdMZ lim /fndu
n—-+0o

Démonstration. On sait déja que le supremum d’éléments de M, est encore dans M, d’apres la
proposition 2.2.8. Comme f,, < f,ona [ f,du < [ fdu. La croissance de I’intégrale assure que la
suite ( i fnd,u)n est elle aussi croissante et donc convergente dans R, . On obtient donc

i [ fudn < [ sy

Démontrons I’inégalité opposée. Soit u une fonction positive étagée inférieure a f et A €]0, 1[. Posons

E,={z € E, f.(x) > lu(x)}

La suite (E},), . est donc croissante (au sens de I'inclusion). Soit # € E. Si u(x) = 0 alors x € E,
pour tout n € N. Si u(z) > 0 alors

lim f,(2) = f(x) > u(x) > Nuz)

et ainsi x € F),, pour n assez grand et donc U, F,, = E. D’autre part, par définition de F,,,
fn > Aulpg, etdonc, pour tout n € N, par croissance de I’intégrale,

La fonction A\ulp, est étagée positive. On sait donc calculer son intégrale. Si u = Zle a; 1,4, alors

k k
/ud,u = Z ;i (A;) et /ulEnd,u = Z a;in(A;NE,)
i=1

i=1

Or, pour tout i = 1,...,k, u (A; N E,) converge en croissant vers p (4;), donc, [ ulp, du converge
vers [ udy. On a donc établi que, pour tout u € E,tel que u < f et tout A €]0, 1],

lim/fnd,uZIim/\/ulEnd,u: )\/ud,u

On obtient donc, en faisant tendre A vers 1, que, I’intégrale de toute fonction étagée positive u
majorée par f est inférieure a la limite des intégrales des fonctions f,,. Il en est donc de méme pour
I’intégrale de f :

/fd,u = sup {/udu,u € &, telle que u < f} < lim/fndu
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et I’égalité est donc établie.
Corollaire 5.2.1. Si f et g sont deux fonctions mesurables positives, alors

/(f+g)du=/fdu+/gdu

Démonstration. D’aprés le théoreme 2.3.3, il existe des suites (f,,),,cy €t (gn),,cy Croissantes de
fonctions étagées positives qui convergent simplement vers f et g respectivement. Alors la suite
(fn + Gn),ey st une suite croissante de fonctions étagées positives qui converge simplement vers
f + g. Lalinéarité de I’intégrale de fonctions étagées assure alors, pour tout 7,

/(fn+9n) dp = /fndu+/gndu

Le théoreme de Beppo Levi permet de conclure en passant a la limite.
Corollaire 5.2.2. (Intervertion du signe somme et du signe intégrale). Si (f,), cy est une suite de
fonctions mesurables positives, on a

/ (f; fn> i — i/fndu

’égalité ayant lieu dans R,

Démonstration. Posons g, = >~/ f. La suite (g,,),,c est une suite croissante de fonctions
mesurables donc on peut

/ (g fn) = / (7}520 9n> dp = lim / Gndpt
i 3 (f ) = 5= (f s

grace au théoreme de convergence monotone.

5.3 Intégration de fonctions mesurables

Définition 5.3.1. Une fonction f définie sur E a valeurs dans R ou C est dite intégrable (par rapport
a ) si elle est mesurable et si [ | f|dp < 4o0.

Nous noterons Lk (1) (resp LE(p) ) ensemble des fonctions intégrables a valeurs réelles (resp.
complexes). Pour étre plus précis, nous utiliserons (en cas d’éventuelles confusions) les notations
Li(E, A p) et LL(E, A, ).

Proposition 5.3.1. Soit f une fonction mesurable a valeurs dans R. Alors [ est intégrable si et
seulement si fTet f~le sont.

Démonstration. Rappelons que f™ = sup(f,0) et /= = —inf(f,0) = sup(—f,0). On a alors

fl=f"+f" f<Ifl, fr<lIfl
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La proposition découle de ces relations.
Définition 5.3.2. Soit f € L} (11). On appelle intégrale de [, et on note [ fdy, le nombre réel

[ tdn= [ ran- [ £au

Remarque On pourra noter encore

[ tin= [ @i

Certains mathématiciens adoptent quant 2 eux la notation [ f(z)du(z) que nous éviterons
d’employer. Ceci dit, il ne s’agit que d’une notation, ni plus ni moins arbitraire qu’une autre.
Proposition 5.3.2. L’ensemble L}, (1) est un espace vectoriel sur R et ’application qui a f associe
f fdu est une forme linéaire sur cet espace. De plus, on a

(i) intégrale conserve la positivité (si f € Ly(p) et f >0, alors [ fdu > 0),

(ii) U'intégrale conserve les inégalités (si f, g € Ly(p) et f < g, alors [ fdu < [ gdp ),

(iii) si f € Ly (), | [ fdu| < [ |fldp.

Démonstration. On sait déja que I’ensemble des fonctions réelles mesurables est un espace vectoriel
sur R. De plus, si f, g € L (u) et A € R, alors |\f + g| < |M||f| + |g|. On en déduit que

/IAf+g|du§ |A|/|f|du+/lgldﬂ<+oo

L’ensemble £} (1) est donc un espace vectoriel sur R.
Soient f,g € Li(u). Ona

{ fH9=U+9)"=(f+9)
fH9=f"—f+9" -9

dou(f+g9)"+f +9 =(f+9)~ + fT+g". On integre cette égalité par rapport a y en
remarquant que tous les termes sont des fonctions mesurables positives. Il vient donc

/(f+9)+dﬂ+/f_d,u+/g_d,u=/(f+g)_du+/f+du+/g+d,u

Toutes ces quantités sont finies donc on obtient

Jrardn= [teg an= [ ran- [ s [gan- [oan

ce qui établit la linéarité de I'intégrale. On montre de méme que

Jondu=n [ sau

Pour prouver (i), on remarque que, si f € £ (1) est positive, alors son intégrale est celle qui a été
définie dans la définition 4.2.1. Elle appartient a R, . Le point (ii) se déduit du point (i) en considérant
la fonction positive et intégrable g — f. Pour montrer (iii) on écrit tout simplement,
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‘/fdu'z‘/ﬁdu—/f‘du’ < [ rrans [ rman= [ 17100

ce qui assure la commutation annoncée de la valeur absolue et de I’intégrale.

Proposition 5.3.3. Soit f une fonction mesurable a valeurs dans C. Alors [ est intégrable si et
seulement si Re f et Im f le sont.

Définition 5.3.3. Soir f € L{.(u). On appelle intégrale de f, et on note [ fdy, le nombre complexe

/fdu:/Refdqui/Imfdu

Proposition 5.3.4. L’ensemble L (11) est un espace vectoriel sur C et 'application qui a f associe
[ fdu est une forme linéaire sur cet espace. De plus,

'/fdu’ < [ 111

Démonstration. Soit o € C tel que ] [f du’ = « [ fdu. On peut toujours choisir o de module 1 et

] / fdu‘ — [adu= [Re(apyin+i [ tmaps

< [IRe(an)idu+ [ |miap)ldn < [ lafidn= [ \7ldn

5.4 Mesures discretes

Soit (£, A) un espace mesurable, (a;),y. une suite de points de [ telle que, pour tout
ke N*, {a} € Aet (a),cy- une suite de réels positifs. On définit une mesure y sur(E, A)

n= Z O‘kéak
k=1

On souhaite étudier I'ensemble £ (1) et comprendre 1’objet [ fdu pour f € L£1(u).

Proposition 5.4.1. Avec les notations du début du paragraphe.

(i) Soit f mesurable de (E, A) dans R... Alors, dans R, [ fdu =3 cnf (a).

(ii) Une fonction f mesurable de (E, A) dans C est u-intégrable ssi y -, oy, | f (ax)| < +00. Dans
cecas, [ fdu =372, arf (ax).

Démonstration. Démontrons le point (¢). On procéde en trois étapes. Supposons que f = 14 avec
A € A. Alors

/ fp=p(A) = alala) =Y anf (@)

Supposons a présent f étagée positive, alors f = > | 3;14,. Par linéarité de I’intégrale,
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o n

/fdu = Z@;M Z@Z&klA ar) Z%Zﬁzlm ay) Zakf (ag)
i=1 i=1 = k=1

Enfin, si f est mesurable positive, il existe une suite croissante de fonctions étagées positives ( f,,)
qui converge simplement vers f. Par le théoréme de convergence monotone,

neN

/fdu = lirgn/fndu = lirllnz afn (ar) = Z ay lim f, (ag) = Zakf (ax)
k=1 k=1 k=1

ce qui acheve la preuve du point (1).
Démontrons a présent le point (ii). Soit f mesurable a valeurs dans C. Appliquons le point (i) a | f| : f
est p-intégrable ssi [ | f|dp est fini ¢’est-a-dire ssi Y, ay | f (ax)| est fini. Si tel est le cas, on écrit

f=Ref)" = (Ref)” +i(lm f)" —i(Im f)~

Les quatre fonctions mesurables positives (Re f)*, ..., (Im f)~sont intégrables par rapport a
(puisqu’elles sont toutes majorées par |f| ). D’aprés (¢ ) et la linéarité de I’intégrale, on obtient la
relation souhaitée.

Exemples 5.4.1. Soit p la mesure Bernoulli de paramétre p €]0,1[: p = pdy + (1 — p)dg. Alors,

/mu(dm) =(1-p)x0+px1 et /cos(mv/él)u(dx) =1—p +p\/7§

Soit =" 7o p(1 — p)*~10x. Alors f € L' si et seulement si

Zp S (R)] < oo

et dans ce cas,
/fdu Zp p) T f (k)

5.5 Mesures a densité

Etant donné un espace mesuré (E, A, 1), on peut construire de nombreuses mesures a partir de
comme le montre la proposition suivante.

Proposition 5.5.1. Soit ( E, A, i1 ) un espace mesuré et g une fonction mesurable positive sur ( E; A
). Soit v I'application de A dans R définie par

V(A):/lAgdu:/Agdu

Alors v est une mesure sur (E, A).
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Démonstration. On a évidemment v()) = 0. Soit (A,,) une suite d’éléments de .4 deux a deux
disjoints. Posons A = U, A,,. On a

V(A)—/lAgd,u—/ZlAngd,u—Z/lAngdu—Zu(An)

grace au théoreme de convergence monotone.

Définition 5.5.1. La mesure v est appelée mesure de densité g par rapport a ji. On la note souvent
g.it. La fonction g est appelée la densité de v par rapport a pu.

Proposition 5.5.2. (Intégration par rapport a une mesure a densité). Avec les notations de la
proposition 4.5.1.

(i) Soit f une fonction mesurable positive sur (E, A). Alors, dans R,

[ tiv= [ (o) .1

(ii) Soit f une fonction mesurable a valeurs complexes sur (E, A). Alors f est intégrable pour v si et
seulement si fg est intégrable pour 1 et on a alors

[ tiv= [ (o)

Démonstration. Pour démontrer le point (i), on procede en trois étapes. Si f = 14 avec A € A, la
relation (4.1) découle de la définition de v. Si f est étagée et positive, 1’égalité se déduit de la linéarité
de I’intégrale. Supposons enfin que f soit simplement mesurable et positive. Soit ( f,,),, . une suite
croissante de fonctions étagées et positives qui converge simplement vers f. Par le théoréme de
convergence monotone,

[ v =t [ v =tim [ (ydn = [ (7o)

Démontrons a présent le point (7). Soit f mesurable a valeurs dans C. Appliquons le point (7) a
|f| : f estv-intégrable ssi [ |f|gdy est fini c’est-a-dire ssi fg est u-intégrable. Si tel est le cas, on
écrit

f=RefN)" = (Ref)” +i(Im f)" —i(Im f)~
Les quatre fonctions mesurables positives (Re f)*, ..., (Im f) sont intégrables par rapport a v

(puisqu’elles sont toutes majorées par |f| ). D’aprés (¢ ) et la linéarité de I’intégrale, on obtient la
relation souhaitée.

5.6 Intégration par rapport a une mesure image

Proposition 5.6.1. (Définition d’une mesure image). Soit ( E, A ) et ( F, B ) deux espaces mesurables
et p une application mesurable de E dans F. Soit p une mesure sur (E, A). L’application v qui a
B € B associe

v(B) = (¢ (B))
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définit une mesure sur (F, B) appelée mesure image de ji par . On la notera [i,.

Démonstration. Comme ¢~ () = 0, ona u (o1 (0)) = 0.
Soit (B,),,cy une suite d’éléments de B deux a deux disjoints. La suite (' (B,,) ) est une suite
d’éléments de A deux a deux disjoints et ¢~ (UB,,) = Up~! (B,,) donc

v(UnBy) = 1 (90_1 (Uan)> =p (Un@_l (Bn>) = Z H (90_1 (Bn)) = Z v(By),

n

ce qui acheve la preuve.
Proposition 5.6.2. Avec les notations de la proposition 4.6.1. -
(i) Soit f une fonction mesurable positive définie sur ( F, B ). Alors (I’égalité a lieu dans R )

/ fdu, = / f o wdy 42)
F E

(ii) Soit f une fonction mesurable a valeurs complexes définie sur (F,B). Alors [ est intégrable par
rapport a i, si et seulement si f o o est intégrable par rapport a ji. Dans ce cas,

[ s, = [ o

Démonstration. Démontrons le point (i) en trois étapes. Si f est la fonction indicatrice de B € B,
I’égalité p,(B) = u (v~ ' (B)) qui définit la mesure image s’écrit encore

/le,u@—/ 1¢1(B)dﬂ—/ 1BOg0dLL
Y X X

Si f est étagée positive, la relation (4.2) se déduit du cas précédent par linéarité. Enfin, si f est
mesurable positive, d’apres le théoréme d’approximation 2.3.3, il existe une suite ( f,,), o croissante
de fonctions étagées positives qui converge simplement vers f. Alors (f,, o ), . est une suite
croissante de fonctions étagées positives qui converge simplement vers f o . D’apres ce qui précede,

on a, pour tout n € N,
[ o= [ 1,00
Y X

et I’égalité souhaitée est conséquence du théoreme de convergence monotone.

Démontrons a présent le point (77). Soit f mesurable a valeurs dans C. Le point (i) appliqué a | f|
montre que f est intégrable par rapport a y, si et seulement si f o ¢ ’est par rapport a y. Supposons
donc f intégrable et écrivons alors

f=Ref)" = (Ref)” +i(lm f)" —i(lm f)~

Les quatre fonctions mesurables positives (Re )T, ..., (Im f)~sont intégrables par rapport a /1,
(puisqu’elles sont toutes majorées par |f| ). D’aprés (¢ ) et la linéarité de I’intégrale, on obtient la
relation souhaitée.
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5.7 Intégrale de Lebesgue et intégrale de Riemann

Rappelons brievement les principes fondamentaux de 1’intégrale de Riemann.

5.7.1 Intégrale sur un intervalle compact

Soit f une fonction réelle bornée sur [a, b]. Soit o : a = ¢ < £ < -+ < x,41 = b une subdivision
de [a, b]. On appelle pas de la subdivision le nombre 6(0) = max;<g<pt1 (T — Tx—1). Posons

my = 1inf {f(t),t € [z, zp41]} et My =sup{f(t),t € [x, Tr11]}
Les sommes de Darboux associées a la subdivision o sont

n

s(o) = ka (Xpy1 — k) et S(o) = Z My (xg41 — o)
k=1

k=1
Définition 5.7.1. On dit que f est intégrable au sens de Riemann sur [a,b] s’il existe un nombre réel
I tel que les sommes s(c) et S(o) tendent vers I quand (o) tend vers O :

Ve >0,d4n >0, Votrqg.d(oc)<n, |Slo)—1I<e et |s(o)—1I <e.

Le nombre [ est alors appelé I'intégrale de Riemann de f sur [a,b] et on le note fab ft)dt.
Considérons a nouveau la subdivision o et, pour tout k, choisissons &, € [xy_1,xx|. La somme de
Riemann définie par o et £ = (&1, . . ., &,) est par définition

S(0,6) =D f (&) (= wx1)

: y . . b
Si f est intégrable au sens de Riemann, les sommes de Riemann convergent vers fa f(t)dt lorsque
d(o) tend vers 0, uniformément par rapport au choix de §. Plus précisément,

Ve>0, dn>0, Votq d(o)<mn, VEassociéao, |[S(0,§)—1I|<e.

Théoréme 5.7.1. Toute fonction f continue par morceaux sur |a, b] est intégrable au sens de
Riemann. De plus, si [ est continue, la fonction v — F(x) = [T f(t)dt est dérivable sur [a,b] de
dérivée ' = f.

5.7.2 Intégrale généralisée
Soit f : [a,b]— R, ol b peut étre égal & +00, localement intégrable au sens de Riemann ; ¢’est-a-dire
intégrable au sens de Riemann sur tout intervalle compact [a, ¢| C [a, b].

On dit que f admet une intégrale généralisée sur [a, b | si la fonction 2 — [ f(t)dt admet une limite
lorsque z tend vers b (avec x < b ). On pose alors

/abf(t)dt ~ lim /:f(t)dt

r—b_
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Dans ce cas, on dit encore que 1’intégrale f; f(t)dt est convergente.

On dit que I'intégrale généralisée fab f(t)dt est absolument convergente si I’intégrale fab | f(t)|dt est
convergente.
Remarque La convergence absolue entraine la convergence, mais la réciproque est fausse comme le

montre 1’exemple classique
*sint
/ L
1 t

5.7.3 Comparaison des intégrales de Riemann et Lebesgue pour une fonction
bornée sur un intervalle compact

Proposition 5.7.1. Soit f une fonction continue sur [a,b]. Alors si \ désigne la mesure de Lebesgue

sur R, fly, € LE(N) et
b
[ tentir= [ sy
R a

Démonstration. 11 est clair que f1, ) est borélienne. Soit M = sup,¢(, ;; |f(¢)]. La fonction f étant
continue sur le compact [a, b], M est un réel positif et

| fliag| < M1y € Lx(N)
ce qui assure que f1j,y est Lebesgue-intégrable. De méme, pour tout x € [a, b], f1(, 4 est

Lebesgue-intégrable. Posons F'(x) = [ f1j,,jd\ et montrons que F est dérivable en tout point z, de
[a, b] de dérivée f (xg). Soit h > 0. Comme

1[a,$o+h}f = 1[a,$o]f + 1]$0,$0+h]f

on a
F(zo+h) - F 1
(IO f)L (l’o) = E/lxo,xo-&-h]fd)\
d’ou
F h)—F 1
(xo + ; (o) — f(z0) = E/1x07x0+h] (f = f(xg))d\

Soit € > 0. Puisque f est continue en z, il existe 7 > 0 tel que pour tout = tel que |x — x| < 7, on
ait | f (zo) — f(z)| <e.Si0 < h < n alors

. — [ (o)

1
< 7 /gl]wo’wowd)\ =€

Le cas h < 0 se traite de méme. Ainsi, F est dérivable sur [a, b] de dérivée f. Comme F'(a) = 0 (car
AM{a}) =0),ona F(z) = [7 f(t)dt pour tout = € [a, b] (et notamment pour z = b ).
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Remarque La proposition précédente s’étend facilement au cas d’une fonction f continue par
morceaux. Elle conduit 2 noter f[a,b} fdz Uintégrale de Lebesgue [ f1(,d) (et méme fab f(x)dz.
Cette notation est souvent adoptée pour une fonction f intégrable au sens de Lebesgue sur [a, b] sans
hypothese de continuité.

Lorsque I’on sort du cadre des fonctions continues par morceaux, les liens entre intégrales de
Riemann et de Lebesgue sont assez subtils. Voici quelques résultats éclairants.

Il existe des fonctions intégrables au sens de Lebesgue qui ne sont pas intégrables au sens de
Riemann. Par exemple la fonction f = 1o 1) est intégrable au sens de Lebesgue et son intégrale est
nulle. En revanche, pour toute subdivision ¢ de [0, 1], ona S(c) = 1 et s(o) = 0.

Les fonctions intégrables au sens de Riemann sur [a, b] sont connues.

Théoréme 5.7.2. (Lebesgue). Une fonction f : [a,b] — R bornée est intégrable au sens de Riemann
ssi il existe N C [a,b] de mesure de Lebesgue nulle tel que f est continue en tout x € |a, b]\N.

5.7.4 Intégrale de Riemann généralisée et intégrale de Lebesgue

Proposition 5.7.2. Soit f : [a,b[— R une fonction continue. Alors f1y,,; € LE(N) si et seulement si

b
fa f(t)dt est absolument convergente et, dans ce cas, on a

/ JlapdA = / bf(t)dt

Démonstration. Supposons d’abord f positive. Soit (b,),,. une suite croissante de points de [a, b[
qui converge vers b. Pour tout n,

bn
/fl[ajbn[d)\ = ft)dt

En utilisant le théoreme de convergence monotone (pour I’intégrale de Lebesgue), on a

bn .
/ flapdA = lim / fligpdA = lim ft)dt e R,
n—+00 n—+00

a

Or, par définition, f est intégrable au sens de Lebesgue si et seulement si cette limite est finie, donc si
et seulement si f est intégrable au sens de Riemann. De plus les intégrales sont les mémes.

I’est, donc

si et seulement si f: f(t)dt est absolument convergente. Si c’est le cas, écrivons f = f* — f~.Ona
ft <|fletf~ <|f|donc f*et f~sontintégrables dans les deux sens et

/ [Tl pd) = /a ’ fH(t)dt, et / [ L pd) = /a ’ [ (t)dt

d’ou le résultat par linéarité.

Dans le cas général, on sait que f est intégrable au sens de Lebesgue si et seulement si | f




Chapitre

Théoremes limites et applications

6.1 Lemme de Fatou

z*N 2

Dans le chapitre précédent, nous avons déja établi un théoréme limite fondamental : le théoreme de
convergence monotone (ou théoreme de Beppo Levi).
Théoréme 6.1.1. Soit (f,,),, oy une suite croissante de M. Alors f = lim,, f, € M_.et

/fdﬂz lim /fndu

Toutefois, I’hypothése de croissance, trés pratique puisqu’elle assure 1’existence de la limite dans R, ,
est inadaptée dans bien des situations. Nous avons besoin d’un théoreme valable pour une suite de
fonctions générique. Le prix a payer est que 1’on ne sera plus assuré de I’existence d’une limite. Par
contre la fonction lim inf f,, est encore définie et c’est elle qui remplacera avantageusement la
fonction lim f,.

Théoréme 6.1.2. (Lemme de Fatou). Si (f,),,cx est une suite de fonctions mesurables positives, alors

/lim inf f,dp < lim inf/fndu

n—o0 n—

Démonstration. Posons ¢ = lim inf f,,. Par définition,

= lim inf f; = supinf f;
g n—+oo k>n f nEII\I) k>n f

La fonction g,, = infy>, fi est une fonction mesurable positive et la suite ( gn)neN converge en
croissant vers g. Le théoreme de convergence monotone assure donc :

lim [ g,dp = /lim inf f,du
n—oo

n—0o0

D’autre part, pour tout n € N, g, < f,, d’ou, par croissance de I’intégrale, fgndu < f fndp. Le
second membre de cette inégalité n’a pas nécessairement de limite mais sa limite inférieure existe
toujours. On obtient donc (par mpassage a la limite inférieurem) :

37
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lim inf / gndp < lim inf / fndp
n—oo n—oo

La limite inférieure du premier membre de 1’inégalité ci-dessus est en fait une limite d’apres la
premiere partie de la preuve, qui n’est rien d’autre que I’intégrale de la limite inférieure de la suite
(fn)nen- Cette remarque achéve donc la preuve.

6.2 Ensembles et fonctions négligeables

Définition 6.2.1. Soit ( E, A, 11 ) un espace mesuré.

(i) On dit qu’une partie N de E est négligeable pour 11 (ou u-négligeable) s’il existe A € A tel que
N C Aetpu(A) =0.

(ii) On dit que la tribu A est complete pour 1 si toute partie ji-négligeable appartient a A.
Définition 6.2.2. Soit (E, A, 1) un espace mesuré. On dit qu’une propriété P sur E est vraie presque
partout (en abrégé p.p. ou ji-p.p.) si [’ensemble des points de E ou elle est fausse est négligeable.
Une fonction [ définie sur E a valeurs réelles ou complexes est dite ji-négligeable si {f # 0} est
négligeable.

Deux fonctions f et g définies sur E a valeurs dans un méme ensemble F sont dites égales presque
partout si { f # g} est négligeable.

On dit qu’une suite (f,),, oy de fonctions définies sur E a valeurs dans C converge vers fi-presque
partout s’il existe un ensemble ji-négligeable N tel que pour tout x ¢ N, on ait lim,, f,,(x) = f(z).

Le lemme suivant est tres utile en pratique.
Lemme 6.2.1. (Inégalité de Markov). Soit f une fonction mesurable positive sur ( E, A ). Alors pour
tout A > 0, on a

1
ESVES: / fdu

Démonstration. Il suffit d’intégrer la relation A1y>5) < f qui est vraie puisque f est positive.
Proposition 6.2.1. Soit f une fonction mesurable de ( E, A ) dans R telle que [ |f|du < +oo. Alors
f est finie u-presque partout.

Démonstration. En effet, pour tout n, on a

% / [fldp > u({|f] > n}) > p({|f] = +o0})

Comme [ |f|dp est fini, en faisant tendre n vers +oo, on obtient u({|f| = +oc}) = 0.
Remarque 5.2.5. La réciproque de cette proposition est fausse : la fonction constante égale a 1 est
finie A\-p.p. mais n’est pas intégrable par rapport a la mesure de Lebesgue.

Proposition 6.2.2. Soit f une fonction mesurable sur (E, A) a valeurs complexes. Alors f est
négligeable si et seulement si [ |f|du = 0.

Démonstration. Supposons tout d’abord que f est négligeable. Comme min(|f|,n) < nlgssp, ona

/ win(|f], n)dp < nu({f #0}) = 0

d’ou [ ‘min(|f|,n)du = 0 pour tout n. D’apres le théoréme de convergence monotone, on a alors
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[ 174 = [ tmmin(|fl.m)dys =t [ min| 7] =0

Réciproquement, supposons que [ |f|du = 0. Alors, pour tout n > 1, on a

w({in=2b) <o f1rian=o

L’ensemble {| f| # 0} s’écrit donc comme réunion dénombrable d’ensembles de mesure nulle :

w20 =U{inz}

n>1

Il est donc également de mesure nulle.

Proposition 6.2.3. Soit ( E, A, i1 ) un espace mesureé.

(i) Soit et g deux fonctions mesurables positives telles que [ < g presque partout. Alors
J fdu < [ gdp.

(ii) Soit f et g deux fonctions mesurables positives telles que f = g presque partout. Alors

[ fdp= [ gdp.

(iii) Soit f et g deux fonctions mesurables complexes telles que f = g presque partout. Alors f est

intégrable si et seulement si g Uest et, dans ce cas, | fdu < [ gdp.

Démonstration. Pour prouver (i), on écrit

J=Ty<gy + L0y

que I’on integre par rapport a j :

/fdu:/fl{ng}du+/f1{f>g}du

Par hypothese, f14; est négligeable donc son intégrale est nulle. On a donc

/fduz/fl{ng}dM

De méme, on voit que

/ gdp = / glip<gydp

Pour conclure, il suffit de remarquer que f1;7<41 < gl{y<g4y. Le point (ii) se déduit de (i) par
symétrie entre f et g.

Démontrons (iii). Si f = gu-p.p., alors | f| = |g|u-p.p., d’ov [ |f|du = [ |g|du par (i7). Par
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conséquent f € L1 (1) si et seulement si g € LE(p). On obtient la conclusion par égalité p-p.p. des

parties positives et négatives des parties réelles et imaginaires et en appliquant (ii).
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6.3 Théoreme de convergence dominée

Théoréme 6.3.1. (de convergence dominée). Soit ( fy,), . une suite de fonctions mesurables sur
(E,A) avaleurs dans R ou C telle que :

(i) (fn),en cOnverge p-presque partout vers une fonction f mesurable,

(ii) il existe une fonction g positive appartenant a L1, (11) telle que

Vn =1, |fu(@)| < g(z) pw—pp.

Alors les fonctions (fy), oy et [ sont intégrables et

lim [ fodu = / fdy
n—oo

On a méme lim, [ |f, — f|dp = 0.

Démonstration. Supposons tout d’abord que la convergence de ( f,,),,oy Vvers f ait lieu partout et que
les inégalités (ii) soient vraies pour tout z € E. Posons g, = 2g — |f, — f]. Alors (g,),,cy €st une
suite de fonctions mesurables positives, et d’apres le lemme de Fatou,

Z/gdu:/liminfgnd,u§liminf/gndu:2/gdu—limsup/]fn—f\d,u

Puisque | gdu < +o0, on voit que limsup,, [ |f, — f]du < 0. On en déduit donc que

i [ 12— fld =0
n—-+o0o

Il en résulte que [ fdu = lim [ f,dpu.

Passons a présent au cas général. Soit N € Atel que, siz ¢ N, lim, f,,(z) = f(z) et u(N) = 0.
Choisissons de plus, pour tout n € N, un ensemble N,, € Atel quesixz ¢ N, |f.(z)] < g(z) et
w(E,) =0.Posons M = N U (U,N,) € A. On a encore y(M) = 0. Posons h,, = f, 1y et

h = f1ps.On a, pour tout x € E et tout n,

lim hy,(z)=h(z) et |h(2)] <g(x)

m——+00

La premieére partie de la preuve assure donc que lim [ |h,, — h| du = 0. Pour conclure, il suffit de
remarquer que h, = f,u — p.p.eth = fu — p.p.

Corollaire 6.3.1. Soit (f,),, oy une suite de fonctions mesurables sur (E, A) a valeurs dans R ou C
telle que Y, [ | fn| dp < +00. Alors les fonctions (f,,),,cy Sont intégrables, la série Y, f, converge
w — p.p. et il existe f € L' (1) telle que

F=Y fu n—pp, giggo/‘f—z:fk
n=1 k=1

i =0, /fduzni;/fndu

Démonstration. Posons g = Y _, | f,|. D’apres le corollaire 4.2.6 (intervertion série-intégrale pour
des fonctions positives),
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/gdu=2/|fn!du<+oo

n>1

La fonction g étant intégrable, elle est finie u-p.p. Posons

N = {x € E,Z]fn(x)] = —i—oo}

C’est un ensemble négligeable de A, et si = ¢ N, la série ) _ f,(z) est absolument convergente, donc
convergente. Posons alors

size N

B :3 folz) siz g N
-

Cette fonction est mesurable comme limite simple de la suite (1 >, _, fx) _ de fonctions

mesurables. De plus, comme

neN

Ve e N¢ |f(2)| < Z |fu(2)| = g(z)

et comme ¢ est intégrable, f 1’est aussi et on a

/|f|dﬂg/ng:§/|fn‘dﬂ

Enfin,

+o0
Yo

d/,L :/]_Nc
k=n+1

+oo
fldn < > /|fk|dM

k=n+1

dp

/'f—g;fk

du=/1ch—k§§fk
< f/lm

k=n+1

Par hypothese, le membre de droite tend vers 0, ce qui acheve la preuve.

6.4 Intégrale dépendant d’un parametre

Théoreme 6.4.1. (continuité d’une intégrale a parameétre). Soit ( E, A, i ) un espace mesuré, ( G, d )
un espace métrique et f une fonction définie sur £ X G, a valeurs réelles ou complexes. On suppose
que

(i) pour p-presque tout x € FE, la fonction a — f(x, ) est continue sur G,

(ii) pour tout o € G, la fonction x — f(x, «) est mesurable sur (E, A),

(iii) il existe une fonction g sur (E, A) mesurable, positive et intégrable telle que pour tout o € G, on
ait | f(z, o) < g(x)p — p.p.

Alors la fonction F : oo [ f(z,a)u(dx) est définie et continue sur G.
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Démonstration. Pour tout o € G, la fonction z — f(z, ) est u-intégrable et I est donc bien définie
sur G. Soit € GG. Montrons que F’ est continue au point . Comme G est un espace métrique, il
suffit de montrer que si (), . est une suite de G' qui converge vers «, alors la suite (¥ (a,)),.cn
converge vers «. Notons f, la fonction définie sur £ qui a tout x € F associe f,(z) = f (z, ;). La
suite (fy ),y satisfait aux hypotheses du théoréme de convergence dominée, d’oti la conclusion.
Théoreme 6.4.2. (dérivabilité d’une intégrale a paramétre). Soit ( E, A, i ) un espace mesuré, I un
intervalle ouvert de R et f une fonction définie sur £ X R, a valeurs réelles ou complexes. On
suppose que

(i) pour p-presque tout x € F, la fonction o — f(x, ) est dérivable sur I,

(ii) pour tout o € F, la fonction x — f(z,a) est p-intégrable,

(iii) il existe une fonction g sur (E, A) intégrable et positive telle que pour ji-presque tout x € E, on
ait

Va e 1,

Alors, pour tout o E I, la fonction x© — f(x «) est intégrable. De plus, la fonction
F:aw [ f(z,a)u(dr) est dérivable sur I et

Vael, F'(a)= gf( a)p(dz)

Démonstration. Par hypothése, il existe un ensemble de mesure nulle N € Atel que siz ¢ N, la
dérivée gf (x, «) existe pour tout point « € I et

Il en résulte que x +— f = (, ) est p-intégrable pour tout o € 1.

Etudions la derlvablhte de Fena € . Soit («,) une suite de I qui converge vers « avec o, 7# «
pour tout n. D’apres le théoréme des accroissements finis, on a, si z ¢ N,

0
o (2, 0)| < law — al g(2).

|f(x7an) - f({L‘,Oz)| S |an _O[|Sl£})

On peut donc appliquer le théoréme de convergence dominée a la suite (%), ol la fonction h,, est
définie sur F par

f(l’,Oén) — f(SC,Oé).

a, —

hn(z) =

Cette suite (h,, ), .y converge simplement sur [\ NV vers la fonction x — f ~(z, a). Cette fonction est
donc p-intégrable. De plus, on a

Lo c(ar) = [ L0 IED, )y L)L)

O n—00 o n—o00 Oy — QU

Il en résulte que F' est dérivable en o de dérivée
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Chapitre 7

Espaces L et L”

Dans toute la suite K désignera indifféremment le corps des réels ou le corps des complexes.

Définition 7.0.1. Pour tout réel p > 0, on définit

Ly(E, A p) = {f :(E,A) = (K, B(K)) mesurable, / |fIPdp < +oo}
E

On utilisera en général la notation Li ().
Exemple 7.0.1. Si m désigne la mesure de comptage sur ( N, P(N) ), alors

Ly (m) = lg(N) = {(an)neN Y lanl” < +OO} :

n=0
Proposition 7.0.1. Pour tout p, Li (11) est un K-e.v.

Démonstration. On vérifie que L (1) est un s.e.v. du K - e.v. des fonctions mesurables de E dans K.
Il est immédiat que la fonction nulle appartient a £ (1t). Soit A € Ket f, g € L (u). Les majorations

(Af+glP < (IS + 19D < max(Al[f], |g))” < 27IAPLFIP + 27]gl?

assurent que \f + g est p-intégrable.
Proposition 7.0.2. 1. Si u(E) < +oo, alors

O<p<q — Lg(p) C Lg(p)

2. Si m est la mesure de comptage sur (N, P(N)), alors

0<p<q = I (N)CI(N).

Démonstration. 1) Si 0 < p < g, alors | f|P < | f|91y5>1y + Lyf<1}. Ainsi, des que f € Lf (1),

1< [\redns 1) < 13) < 400

45
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2. Si0 < p<q et(ay),ey € IR(N) alors lim, a, = 0. Il existe donc ny € N tel que pour tout
n > ng, la,| < 1. Ainsi, pour tout n > ng, [a,|” < |an|’, dou Y7, - lan|” < 4oo.

Remarque Sur (R, 5(R)) muni de la mesure de Lebesgue A, on remarque que

Ljo1)(2) 1 2 1 2 1
NG e LLA\L(N) et z— N e LML (N).

Il n’existe donc pas d’inclusion entre £'(\) et £2()\).

Pour toute fonction f : (E,.A) — K et pour tout réel p > 0, on définit la quantité

p
1l = ( [E |f|’”du) R,

avec la convention (+00)'/? = 4-o0.
Théoreme 7.0.3. (Inégalité de Holder). Soient f,g: E— Ketp,q > 1telsque 1/p+1/q =1 (on
dit que p et q sont conjugués).

1. Si f et g sont a valeurs dans R alors (dans R.)

0< / Fadu < I1f 1,9l

En outre, lorsque || f||, et || g, sont finis, I'inégalité est une égalité si et seulement si il existe

(o, B) € R2\{(0,0)} rel que o f? = Bgp — p.p.
2.8i f € L () et g € LL(p) alors fg € L (1) et

1fglly < [/ llpllgllq

En outre, I'inégalité est une égalité si et seulement si il existe (o, 3) € R2\{(0,0)} el que
alflP = Blgl'n —p-p.

Démonstration. Commencons par établir une inégalité utile dans la suite. On pose pour tout

a €0, 1] ettoutz € Ry, p,(x) = 2% — aw. La fonction ¢, est dérivable sur R* et

¢l (z) = a(x*~1 —1). Par suite, ¢/, < O sur |1, +oo [ et ¢/, > 0 sur |0, 1[. Donc, pour tout z € R,
Vo) < (1) avec égalité ssi x = 1. En reformulant, 2% < ax + 1 — « avec égalité ssi x = 1. En
posant z = u/v avec u > 0 etv > 0, il vient

u v < au+ (1 —a)v  avec égalité ssiu = v (7.1)

Remarquons que cette inégalité est encore vraie pour u,v € R,.

Revenons a présent a la preuve de I’inégalité de Holder. Si || |, ou ||g]|, est nulle, alors f ou g est
nulle . — p.p. et il en est de méme pour fg. Dans ce cas, I’inégalité est triviale. C’est encore le cas si
| fll, ou || gl vaut +-00. Supposons donc que ces deux quantités sont strictement positives et finies.
On pose alors

P q
, dotl—a=-, u:f— et v= g

o= - .
p q 1f1l5 lglla
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D’apres I’inégalité (7.1),

1P 1 g
fg <1 S 1o
1 lpllglle = 2 AN allglls

En intégrant cette relation par rapport a , il vient

o< [ o < HprHqu( T pr w2 [ )z 11l

L égalité a lieu ssi f /|| f[l, = g/l|gllq4-p-p-
Corollaire 7.0.1. Si i est une mesure de probabilité, I’application v — || f||, est croissante.

Théoréme 7.0.4. (Inégalité de Minkowski). Si p > 1, alors, pour tous f,g € Ly (),

1+ gllp < [1Fllp + llgllp-

L’égalité a lieu ssi
—f=0u—pp. oug=afu—pp.,pourunca>0sip>1.
—f=0u—pp.oufg>0u—ppsip=1

Démonstration. Si || f + g||, = 0, I'inégalité est triviale. Sinon, on intégre par rapport a y ’inégalité
If+agl” <|fIIf + 9" +1gllf +g/~' aveclaconvention 2° = 1 pour x > 0

On obtient alors

I+ gl < / IS + gt + / gl1f + gl du

Si p = 1, I'inégalité est établie. Sinon, I’inégalité de Holder assure que (puisque (p — 1)g = p)

1/q
J 105 =t < U ([ 15+ ol 0an) =0+ ol
Ainsi,
1+ glly < 17+ Nl 1 + 91"

Il ne reste plus qu’a simplifier par || f + g|[b /a qui est strictement positif et 2 remarquer que

p — p/q = 1 pour obtenir I’inégalité souhaitée.

- ||, est une semi-norme sur ’espace L% (11). Pour que ce soit une norme, il
faudrait que || f||, = 0 implique f = 0, ce qui est faut puisque la nullité de || f||, implique seulement

[ = 0p-p.p.

I1 existe une fagon simple de construire un espace vectoriel normé a partir de £? et || - ||, : il suffit de
quotienter L par la relation d’équivalence f ~ g ssi f = gu-p.p.

Définition 7.0.2. On pose Lt (1) = L5 (1)\ ~. L’espace L% (1) muni de 'application || - ||, est un
K-espace vectoriel normé.



48 CHAPITRE 7. ESPACES L ET L*

On commet I’abus bien pratique d’identifier une fonction a sa classe d’équivalence.
Théoréme 7.0.5. Pour tout p > 0, ’espace vectoriel normé ( Ly (1), || - ||, ) est complet.
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