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Chapitre 1
Séries numériques

Table des matières

Exercice 1

Déterminer la nature de la série de terme général un dans les exemples suivants :
a) | sinn|

n2 b)
√
n−
√
n− 1 c)

(
1
2

+ 1
n

)n d) ln n2+2n+3
n2+2n+2

e) 1− cos
(
sinn
n

)
f) n

1
n2 − 1 g) 2n

n!
h)

(n+1)a−na
nb

, (a, b) ∈ R2.

Solution :

4.1 a) On a : 0 6 | sinn|
n2 6 1

n2 .

D’après l’exemple de Riemann ( 2 > 1 ) et le théorème de majoration pour des séries à termes > 0,
on conclut que la série

∑
n un converge.

b) On a, en utilisant une expression conjuguée :

un =
√
n−
√
n− 1 =

1
√
n+
√
n− 1

>
1

2
√
n

=
1

2n
1
2

.

D’après l’exemple de Riemann ( 1/2 6 1 ) et le théorème de minoration pour des séries à termes > 0,
on conclut que la série

∑
n un diverge.

c) On a, pour n > 3 : 0 6
(
1
2

+ 1
n

)n
6
(
5
6

)n.

Puisque 0 6 5
6
< 1, la série géométrique

∑
n

(
5
6

)n converge. Par théorème de majoration pour des
séries à termes > 0, on conclut que la série

∑
n un converge.

d) On a :

ln
n2 + 2n+ 3

n2 + 2n+ 2
= ln

(
1 +

1

n2 + 2n+ 2

)
≈ 1

n∞
1

n2 + 2n+ 2
≈ 1

n2
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D’après l’exemple de Riemann ( 2 > 1 ) et le théorème d’équivalence pour des séries à termes > 0,
on conclut que la série

∑
n un converge.

e) Comme sinn
n
−→
n∞

0 et que 1− cosx ∼
x→0

x2

2
, on a :

1− cos

(
sinn

n

)
∼
n∞

1

2

(
sinn

n

)2

Et :

0 6

(
sinn

n

)2

6
1

n2

D’après l’exemple de Riemann (2 > 1), la série
∑

n
1
n2 converge. Par théorème de majoration pour

des séries à termes > 0, la série
∑

n

(
sinn
n

)2 converge. Par théorème d’équivalence pour des séries à
termes > 0, on conclut que la série

∑
n un converge.

f) On a :

n
1
n2 − 1 = e

lnn
n2 − 1 ∼

n∞

lnn

n2

Pour étudier la nature de la série
∑

n
lnn
n2 , nous allons essayer d’utiliser la règle nαun.

On a :

n3/2 lnn

n2
=

lnn

n1/2
−→
n∞

0

par prépondérance classique. D’où, à partir d’un certain rang : n3/2 lnn
n2 6 1, donc : 0 6 lnn

n2 6 1
n3/2 .

D’après l’exemple de Riemann (3/2 > 1), la série
∑

n
1

n3/2 converge. Par théorème de majoration
pour des séries à termes > 0, la série

∑
n

lnn
n2 converge. On conclut, par théorème d’équivalence pour

des séries à termes > 0, que la série
∑

n un converge.
g) On a : ∀n ∈ N, un > 0 et :

un+1

un
=

2n+1

(n+ 1)!

n!

2n
=

2

n+ 1
−→
n∞

0 < 1

D’après la règle de d’Alembert, on conclut que la série
∑

n un converge.

h) On a :

un =
(n+ 1)a − na

nb
=na−b

((
1 +

1

n

)a
− 1

)
= na−b

(
a

n
+ o

(
1

n

))
- Si a 6= 0, alors : un ∼

n∞
na−b a

n
= ana−b−1.

Il en résulte, d’après l’exemple de Riemann et le théorème d’équivalence pour des séries à termes
> 0, que la série

∑
n un converge si et seulement si a− b− 1 < −1, c’est-à-dire a < b.

- Si a = 0, alors un = 0 pour tout n ∈ N∗, donc la série
∑

n un converge.
Finalement, la série

∑
n un converge si et seulement si :
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a < b ou a = 0.

Exercice 2

Déterminer la nature de la série de terme général un dans les exemples suivants :
a) 1

n2 lnn
b) lnn

n
c) lnn

n2 d) 1√
n lnn

e) 1
n lnn

f) 1
n(lnn)2

.

Solution :

a) On a, pour n > 3 : 0 6 1
n2 lnn

6 1
n2 .

D’après l’exemple de Riemann ( 2 > 1 ) et le théorème de majoration pour des séries > 0, on conclut
que la série

∑
n

1
n2 lnn

converge.
b) On a, pour n > 3 : lnn

n
> 1

n
> 0.

D’après l’exemple de Riemann et le théorème de minoration pour des séries à termes > 0, on conclut
que la série

∑
n

lnn
n

diverge. c) On a : n3/2un = n3/2 lnn
n2 = lnn

n1/2 −−→
n∞

0, par prépondérance

classique, d’ où, à partir d’ un certain rang : n3/2un 6 1, et donc : 0 6 un 6 1
n3/2 .

D’après l’exemple de Riemann ( 3/2 > 1 ) et le théorème de majoration pour des séries à termes > 0,
on conclut que la série

∑
n

lnn
n2 converge.

d) On a : nun = n 1√
n lnn

=
√
n

lnn
−−→
n∞

+∞, par prépondérance classique, d’ où, à partir d’un certain

rang : nun > 1, et donc : un > 1
n
> 0.

D’après l’exemple de Riemann et le théorème de minoration pour des séries à termes > 0, on conclut
que la série

∑
n

1√
n lnn

diverge.
e) Considérons l’application

f :

[
2; +∞

[
−→ R, x 7−→ 1

x lnx

Il est clair que f est continue, décroissante, > 0. D’après le cours sur la comparaison série/intégrale,
la série

∑
n un converge si et seulement si l’application f est intégrable sur [ 2; +∞ [.

On a, pour tout X ∈ [2; +∞[ :

∫ X

2

f(x)dx =

∫ X

2

1

x lnx
dxy = lnx

∫ lnX

ln 2

1

y
dy

= [ln y]lnXln 2 = ln lnX − ln ln 2 −→
x−→+∞

+∞.

Ainsi, f n’est pas intégrable sur [ 2; +∞ [ et on conclut que la série
∑

n
1

n lnn
diverge.

f) Considérons l’application

g :

[
2; +∞

[
−→ R, x 7−→ 1

x(lnx)2

Il est clair que g est continue, décroissante, > 0.
D’après le cours sur la comparaison série/intégrale, la série

∑
n un converge si et seulement si

l’application g est intégrable sur [2; +∞[. On a, pour tout X ∈ [2; +∞[ :
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∫ X

2

g(x)dx =

∫ X

2

1

x(lnx)2
dx =

y=lnx

∫ lnx

ln 2

1

y2
dy

=

[
−1

y

]lnx
ln 2

= − 1

lnX
+

1

ln 2
−→
x→+∞

1

ln 2

Ainsi, g est intégrable sur [2; +∞[, et on conclut que la série
∑

n
1

n(lnn)2
converge.

Exercice 3

Soit
∑

n≥0 an une série à termes dans R∗+, convergente. Déterminer la nature des séries de termes
généraux :
un = an

1+an
, vn = ch an−1

an
, wn = a2n.

Solution :

On a, pour tout n : 0 6 un = an
1+an

6 an.
Comme la série

∑
n an converge, par théorème de majoration pour des séries à termes > 0, on

conclut que la série
∑

n un converge.
- Puisque la série

∑
n an converge, on a : an −−→

n∞
0, donc :

vn =
ch an − 1

an
∼
n∞

1
2
a2n
an

=
1

2
an > 0.

Comme la série
∑

n an converge, par théorème d’équivalence pour des séries à termes > 0, on
conclut que la série

∑
n vn converge.

- Puisque la série
∑

n an converge, on a : an −−→
n∞

0, donc, à partir d’un certain rang : 0 6 an 6 1,
d’où :

0 6 wn = a2n 6 an

Comme la série
∑

n an converge, par théorème de majoration pour des séries à termes > 0, on
conclut que la série

∑
nwn converge.

Exercice 5

Déterminer la nature de la série de terme général un dans les exemples suivants : a) (−1)nn
n3+n+1

, b) (−1)n√
n

,

c) (−1)n
n+(−1)n , d) (−1)n√

n+(−1)n .

Solution :

4.5 a) On a : ∀n ∈ N, |un| = n
n3+n+1

6 n
n3 = 1

n2 .



9

D’après l’exemple de Riemann ( 2 > 1 ) et le théorème de majoration pour des séries à termes > 0, la
série

∑
n |un| converge. Ainsi, la série

∑
n un converge absolument, donc converge.

b) La série
∑

n>1 un est alternée, un −−→
n∞

0 et la suite (|un|)n>1 est décroissante, donc, d’après le

TSCSA, la série
∑

n>1 un converge.
c) Effectuons un développement asymptotique :

un =
(−1)n

n+ (−1)n
=

(−1)n

n

(
1 +

(−1)n

n

)−1
=

(−1)n

n

(
1 +O

(
1

n

))
=

(−1)n

n
+O

(
1

n2

)

D’après le TSCSA, la série
∑

n>1
(−1)n
n

converge.
Par théorème de comparaison, puisque la série

∑
n

1
n2 converge et est à termes > 0, la série∑

nO
(

1
n2

)
converge absolument, donc converge.

Par addition de deux séries convergentes, on conclut que la série
∑

n un converge.
d) Effectuons un développement asymptotique :

un =
(−1)n√
n+ (−1)n

=
(−1)n√

n

(
1 +

(−1)n√
n

)−1
=

(−1)n√
n

(
1− (−1)n√

n
+O

(
1

n

))
=

(−1)n√
n
− 1

n
+O

(
1

n3/2

)

D’après le TSCSA, la série
∑

n>1
(−1)n√

n
converge.

La série
∑

n>1
1
n

diverge.
Par théorème de comparaison, puisque la série

∑
n>1

1
n3/2 converge et est à termes > 0, la série∑

nO
(

1
n3/2

)
est absolument convergente, donc convergente.

Par addition d’une série divergente et de deux séries convergentes, on conclut que la série
∑
un

diverge.

Exercice 6

1-Soit (un)n une suite réelle. On suppose que les séries
∑

n un et
∑

n u
2
n convergent.

a) Montrer que, à partir d’un certain rang, un 6= −1.
b) Établir que la série

∑
n

un
1+un

converge.
2-Soit

∑
n=1 un une série à termes dans R+, convergente.

Montrer que la série
∑

n>1

√
un
n

converge.

Solution :

1- a) Puisque la série
∑

n un, converge, on a : un −−→
n∞

0, donc, à partir d’un certain rang : un 6= −1.
b) D’après a ), la série de terme général vn = un

1+un
est bien définie à partir d’un certain rang.

On a, pour tout n :
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|vn − un| =
∣∣∣∣ un
1 + un

− un
∣∣∣∣ =

u2n
|1 + un|

∼
n∞

u2n

Comme la série de terme général u2n converge, d’après le théorème d’équivalence pour des séries à
termes > 0, la série de terme général |vn − un| converge. Ainsi, la série de terme général vn − un est
absolument convergente, donc convergente. Enfin, comme, pour tout n : vn = (vn − un) + un, par
addition de deux séries convergentes, on conclut que la série de terme général vn est convergente. 2-

∀N ∈ N∗, 0 6
N∑
n=1

√
un
n

6

(
N∑
n=1

un

) 1
2
(

N∑
n=1

1

n2

) 1
2

.

Puisque les séries
∑

n un et
∑

n
1
n2 sont convergentes et à termes > 0, on a, pour tout N ∈ N∗ :

N∑
n=1

un 6
+∞∑
n=1

un et
N∑
n=1

1

n2
6

+∞∑
n=1

1

n2
.

D’où :

∀N ∈ N∗, 0 6
N∑
n=1

√
un
n

6

(
+∞∑
n=1

un

) 1
2
(

+∞∑
n=1

1

n2

) 1
2

Ceci montre que les sommes partielles de la série à termes > 0,
∑

n>1

√
un
n

, sont majorées.
D’après un lemme du cours, on conclut que la série

∑
n>1

√
un
n

converge.

Exercice 7

On note, pour tout n ∈ N∗ :

un =

{
1
n

si n 6≡ 0[3]
−2
n

si n ≡ 0[3]

Montrer que la série
∑

n>1 un converge et calculer sa somme.

solution

4.22 - Groupons les termes trois par trois.

On a, pour tout p ∈ N∗ :
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3p∑
n=1

un =

(
1

1
+

1

2
− 2

3

)
+

(
1

4
+

1

5
− 2

6

)
+ · · ·

+

(
1

3p− 2
+

1

3p− 1
− 2

3p

)
=

3p∑
n=1

1

n
− 3

p∑
k=1

1

3k
=

3p∑
n=1

1

n
−

p∑
n=1

1

n

=

3p∑
n=p+1

1

n
=

2p∑
i=1

1

p+ i
=

1

p

2p∑
i=1

1

1 + i
p

En notant q = 2p, on a donc :

3p∑
n=1

un = 2
1

q

q∑
i=1

1

1 + 2i
q

On reconnait une somme de Riemann, pour la fonction f : x 7−→ 1
1+2x

, qui est continue sur le
segment [0; 1]. On a donc :

1

q

q∑
i=1

1

1 + 2i
q

−→
q∞

∫ 1

0

1

1 + 2x
dx

=

[
1

2
ln(1 + 2x)

]1
0

=
1

2
ln 3

On a donc, par suite extraite :
∑3p

n=1 un −−→p∞ ln 3. - Comme un −−→
n∞

0, on a alors aussi :

3p+1∑
n=1

un =

(
3p∑
n=1

un

)
+ u3p+1 −→

p∞
ln 3

3p+2∑
n=1

un =

(
3p∑
n=1

un

)
+ u3p+1 + u3p+2 −→

p∞
ln 3.

Comme les 3p, 3p+ 1, 3p+ 2, p décrivant N∗, recouvrent tous les entiers ( > 3 ), on déduit :

n∑
k=1

uk −→
n∞

ln 3.

Exercice 8

On considère la suite réelle (un)n>1 définie par u1 = 1 et :

∀n > 1, un+1 =

√
u2n +

1

n

a) Déterminer la limite de un et un équivalent simple de un lorsque l’entier n tend vers l’infini.
b) Déterminer la nature des séries de termes généraux 1

un
et (−1)n

un
.
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solution

a) - Une récurrence immédiate montre que, pour tout n > 1, un existe et un > 1.
- On a, pour tout n > 2 : u2n = u2n−1 + 1

n−1 ,
d’où, en réitérant et en additionnant :

u2n = u21 + (
1

1
+

1

2
+ · · ·+ 1

n− 1︸ ︷︷ ︸
noté Hn−1

),

d’où, puisque un > 0 : un =
√

1 + Hn−1.
Comme Hn −−→

n∞
+∞, on déduit : un −−→

n∞
+∞.

De plus, on sait :

Hn−1 ≈
n∞

ln(n− 1) = lnn+ ln

(
1− 1

n

)
∼
n∞

lnn,

donc : un ∼
n∞

√
lnn.

b) 1) On a : 1
un
≈ 1√

lnn
> 0.

Comme n 1√
lnn
−→
n∞

+∞, à partir d’un certain rang : n 1√
lnn

> 1, donc : 1√
lnn

> 1
n

. D’après l’exemple
de Riemann et le théorème de minoration pour des séries à termes > 0, on déduit que la série∑

n
1√
lnn

diverge.
D’après le théorème d’équivalence pour des séries à termes > 0, on conclut que la série de terme
général 1

un
diverge.

2) La série
∑

n>1
(−1)n
un

, est alternée, son terme général tend vers 0 (car un −−→
n∞

+∞ ) et la suite(
1
un

)
n>1

est décroissante, car :

∀n > 1, un+1 =

√
u2n +

1

n
> un.

D’après le TSCSA, on conclut que la série de terme général (−1)n
un

converge.

Exercice 9

Existence et calcul de
∑+∞

n=1 un où un = 1
n(2n+1)

.

solution

4.47 1) Existence :
On a : un = 1

n(2n+1)
≈ 1

2n2 > 0. D’après l’exemple de Riemann ( 2 > 1 ) et le théorème
d’équivalence pour des séries à termes > 0, on conclut que la série

∑
n>1 un converge.

2) Calcul :
Essayons de faire apparaître un télescopage dans l’expression des sommes partielles, en utilisant une
décomposition en éléments simples d’une fraction rationnelle.



13

On a facilement la décomposition en éléments simples :

1

X(2X + 1)
=

1

X
− 2

2X + 1

D’où, pour tout N > 1 :

N∑
n=1

un =
N∑
n=1

(
1

n
− 2

2n+ 1

)
=

N∑
n=1

1

n
− 2

N∑
n=1

1

2n+ 1

=
N∑
n=1

1

n
− 2

(
2N+1∑
p=2

1

p
−

N∑
n=1

1

2n

)
= 2

N∑
n=1

1

n
− 2

2N+1∑
n=2

1

n

=2(lnN + γ + o
N∞

(1))− 2(ln(2N + 1) + γ + o(1)) + 2

=2 ln
N

2N + 1
+ 2 + o(1) 2

N∞
ln

1

2
+ 2 = 2− 2 ln 2.

On conclut que la série
∑

n>1 un converge (ce qui était déjà acquis d’après 1 )), et que :∑+∞
n=1 un = 2− 2 ln 2.
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Chapitre 2
Suite et Série des fonctions

Exercice 1

Étudier (convergence simple, convergence uniforme, convergence uniforme sur des parties de
l’ensemble de départ) les suites d’applications suivantes :
a) fn : R −→ R, x 7−→ n+1

n2+x2
, n ∈ N∗

b) fn : [0; 1] −→ R, x 7−→ nx2

1+nx
, n ∈ N∗

c) fn : R −→ R, x 7−→ x
x2+n2 , n ∈ N∗

d) fn : [0; 1] −→ R, x 7−→ xn(1− x), n ∈ N∗
e) fn : [0; +∞[−→ R, x 7−→ nx3

1+n2x
, n ∈ N.

Solution :

a) 1) Convergence simple :
On a, pour tout x ∈ R fixé : fn(x) = n+1

n2+x2
−−→
n∞

0, donc : fn
C.S.−−→
n∞

0.
2) Convergence uniforme :
On a : ∀n ∈ N+,∀x ∈ R, |fn(x)| = n+1

n2+x2
6 n+1

n2 , donc :

‖fn‖∞ 6
n+ 1

n2
−→
n∞

0

On conclut : fn
C.U−−→
n∞

0, et donc fn
C.S.−−→
n∞

0, ce qui rend l’étude de 1) inutile, à condition de prévoir que
la limite sera 0 . b) 1) Convergence simple :

Soit x ∈ [0; 1]. Si x 6= 0, alors : fn(x) = nx2

1+nx
∼
n∞

nx2

nx
= x, donc : fn(x) −−→

n∞
x. Si x = 0, alors :

fn(x) = 0 −−→
n∞

0. On conclut : fn
C.S.−−→
n∞

f , où : f : [0; 1] −→ R, x 7−→ x. 2) Convergence uniforme :

On a : ∀n ∈ N∗, ∀x ∈ [0; 1],

|fn(x)− f(x)| =
∣∣∣∣ nx2

1 + nx
− x
∣∣∣∣ =

x

1 + nx
6

1

n

donc :

15



16 CHAPITRE 2. SUITE ET SÉRIE DES FONCTIONS

‖fn − f‖∞ 6
1

n
−→
n∞

0

On conclut : fn
C.U.−−→
n∞

f , ce qui semble rendre l’étude de 1 ) inutile. Cependant, pour former

‖fn − f‖∞, il faut d’abord connaître f , ce qui nécessite l’étude de la convergence simple. c) 1)
Convergence simple :
On a, pour tout x ∈ R fixé : fn(x) = x

x2+n2 −−→
n∞

0, donc : fn
C.S.−−→
n∞

0. 2) Convergence uniforme :
1re méthode :
Soit n ∈ N∗. L’application fn est impaire, de classe C1 sur R, et, pour tout x ∈ [0; +∞[ :

f ′n(x) =
x2 + n2 − x(2x)

(x2 + n2)2
=

n2 − x2

(x2 + n2)2
,

On a donc : ‖fn‖∞ = fn(n) = n
2n2 = 1

2n
−→
n∞

0, et on conclut : fn
C.U.−−→
n∞

0, donc fn
C.S.−−→
n∞

0, ce qui
rend l’étude de 1 ) inutile.
2ε méthode :
Soit n ∈ N∗. Rappelons : ∀(a, b) ∈ (R+)2 , a2 + b2 > 2ab. On a donc :

∀x ∈ R+
+, 0 6 fn(x) =

x

x2 + n2
6

x

2nx
=

1

2n
,

d’où, puisque fn(0) = 0 et que fn est impaire :

‖fn‖∞ 6
1

2n
,

et on termine comme dans la 1re méthode. d) 1) Convergence simple :
Soit x ∈ [0; 1] fixé. Si x 6= 1, alors : fn(x) = xn(1− x) −−→

n∞
0.

Si x = 1, alors : fn(x) = 0 −−→
n∞

0.

On conclut : fn
C.S.−−→
n∞

0.
2) Convergence uniforme :
Soit n ∈ N∗. L’application fn est de classe C1 sur [0; 1] et, pour tout x ∈ [0; 1] :

f ′n(x) = nxn−1 − (n+ 1)xn = xn−1(n− (n+ 1)x)

On a donc :

‖fn‖∞ = fn

(
n

n+ 1

)
=

(
n

n+ 1

)n
1

n+ 1
6

1

n+ 1
−→
n∞

0

et on conclut : fn
C.U−−→
n∞

0, ce qui rend l’étude de 1 ) inutile. e) 1) Convergence simple :

Soit x ∈ [0; +∞[ fixé.
Si x 6= 0, alors : fn(x) = nx3

1+n2x
∼
n∞

x2

n
−−→
n∞

0.

Si x = 0, alors : fn(x) = 0 −−→
n∞

0.

On conclut : fn
C.S−−→
no∞

0. 2) Convergence uniforme :
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- On remarque que, pour tout n ∈ N, fn − 0 n’est pas bornée sur [0; +∞ [ , car fn(x) −−−−→
x→+∞

+∞,

donc : fn
c.µ−−→
n∞

0 sur [0; +∞[.

- Soit b ∈ [0; +∞[ fixé.
On a :

∀n ∈ N+,∀x ∈ [0; b], |fn(x)| = nx3

1 + n2x
6
x2

n
6
b2

n
,

donc :

‖fn‖[0;b]∞ 6
b2

n
−→
n∞

0

On conclut :
fn

c.u−−→
n∞

0 sur tout [a; b], b ∈ [0; +∞[ fixé.

Exercice 2

Déterminer les limites suivantes, lorsque l’entier n tend vers l’infini :
a) limn∞

∫ +∞
0

e−
x
π

1+x2
dx

b) limn∞
∫ +∞
1

n
nx2+ex

dx

c) limn∞
∫ +∞
0

xn

x2n+xn+1
dx.

Solution :

Nous allons essayer, dans ces exemples, d’appliquer le théorème de convergence dominée.
a) Notons, pour tout n ∈ N∗ :

fn :

[
0; +∞

[
−→ R, x 7−→ e−

x
n

1 + x2

- Pour tout n ∈ N+, fn est continue par morceaux (car continue) sur [0; +∞[.
- Pour tout x ∈ [0; +∞[ fixé :

fn(x) =
e−

x
x

1 + x2
−→
n∞

1

1 + x2

En notant f :
[
0; +∞

[
−→ R, x 7−→ 1

1+x2
, on a donc : fn

C.S−−→
n∞

f .

- f est continue par morceaux (car continue) sur [0; +∞[.
- On a :

∀n ∈ N∗,∀x ∈
[
0; +∞

[
, |fn(x)| = e−

x
n

1 + x2
6

1

1 + x2
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et I’application x 7−→ 1
1+x2

est continue par morceaux (car continue), > 0, intégrable sur [0; +∞[ car
1

1+x2
∼

x→+∞
1
x2

, exemple de Riemann en +∞(2 > 1) et théorème d’équivalence pour des fonctions
> 0.
Ainsi, (fn)n∈N+vérifie l’hypothèse de domination.
D’après le théorème de convergence dominée, f est intégrable sur [0; +∞[ et :

∫ +∞

0

fn −−→
n∞

∫ +∞

0

f =

∫ +∞

0

1

1 + x2
dx

= [Arctanx]+∞0 =
π

2

On conclut : limn∞
∫ +∞
0

e−
x
x

1+x2
dx = π

2
.

b) Notons, pour tout n ∈ N :

fn :

[
1; +∞

[
−→ R, x 7−→ n

nx2 + ex

- Pour tout n ∈ N, fn est continue par morceaux (car continue) sur [1; +∞[.
- On a, pour tout x ∈ [1; +∞[ fixé :

fn(x) =
n

nx2 + ex
=

1

x2 + ex

n

−→
n∞

1

x2

Ainsi : fn
C.S.−−→
n∞

f , où : f :
[
1; +∞

[
−→ R, x 7−→ 1

x2
.

- f est continue par morceaux (car continue) sur [1; +∞[.
- On a :

∀n ∈ N,∀x ∈
[
1; +∞

[
, |fn(x)| = n

nx2 + ex
6

1

x2
,

et x 7−→ 1
x2

est continue par morceaux (car continue), > 0, intégrable sur [1; +∞[ (exemple de
Riemann en +∞, 2 > 1 ). Ceci montre que (fn)n∈N vérifie l’hypothèse de domination. D’après le
théorème de convergence dominée, on déduit :∫ +∞

1

fn −→
n∞

∫ +∞

1

f =

∫ +∞

1

1

x2
dx =

[
−1

x

]+∞
1

= 1

On conclut : limn∞
∫ +∞
1

n
nx2+ex

dx = 1.
c) Notons, pour tout n ∈ N+ :

fn :

[
0; +∞

[
−→ R, x 7−→ xn

x2n + xn + 1

- Pour tout n ∈ N, fn est continue par morceaux (car continue) sur [0; +∞[.
- Soit x ∈ [0; +∞[.
Si 0 6 x < 1, alors : fn(x) = xn

x2n+xn+1
−−→
n∞

0.

Si x = 1, alors : fn(x) = 1
3
−−→
n∞

1
3
.

Si x > 1, alors :
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fn(x) =
xn

x2n + xn + 1
∼
n∞

xn

x2n
= x−n −−→

n∞
0

Ainsi : fn
C.S.−−→
n∞

f sur [0; +∞[, où :

f :

[
0; +∞

[
−→ R, x 7−→

{
0 si x 6= 1

1/3 si x = 1

- f est continue par morceaux sur [0; +∞[.
- Soient n ∈ N+, x ∈ [0; +∞[
Si 0 6 x 6 1, alors :

0 6 fn(x) =
xn

x2n + xn + 1
6 xn 6 1

Si x > 1, alors :

0 6 fn(x) 6
xn

x2n
=

1

xn
6

1

x2
si n > 2

Ainsi : ∀n ∈ N+ − {1},∀x ∈ [0; +∞ [, |fn(x)| 6 ϕ(x) , où :

ϕ :

[
0; +∞

[
−→ R, x 7−→

{
1 si 0 6 x 6 1
1
x2

si 1 < x

L’application ϕ est continue par morceaux, > 0, intégrable sur [0; +∞[ (exemple de Riemann en
+∞, 2 > 1 ). Ceci montre que (fn)n>2 vérifie l’hypothèse de domination.
D’après le théorème de convergence dominée, on déduit :

∫ +∞

0

fn −−→
n∞

∫ +∞

0

f = 0

On conclut : limn∞
∫ +∞
0

xn

x2n+xn+1
dx = 0.

Exercice 3

Soit f : [0; 1] −→ C continue par morceaux. Montrer :∫ 1

0

f(x)
(

1− x

n

)n
dx −→

n∞

∫ 1

0

f(x)e−x dx.

Solution :

Essayons d’appliquer le théorème de convergence dominée.
Notons, pour tout n ∈ N+ :

fn : [0; 1] −→ C, x 7−→ fn(x) = f(x)
(

1− x

n

)n
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- Pour tout n ∈ N+, fn est continue par morceaux, comme produit de deux applications continues par
morceaux.
- Pour tout x ∈ [0; 1], et pour n > 2 :

fn(x) = f(x) exp
(
n ln

(
1− x

n

))
= f(x) exp

(
n

[
−x
n

+ o
n∞

(
1

n

)])
= f(x) exp(−x+ o(1)) −−→

n∞
f(x)e−x

En notant g : [0; 1] −→ C, x 7−→ f(x)e−x, on a donc : fn
C.S−−→
n∞

g sur [0; 1].
- L’application g est continue par morceaux, comme produit de deux applications continues par
morceaux.
- On a, pour tout n ∈ N2 et tout x ∈ [0; 1] :

|fn(x)| = |f(x)|
(

1− x

n

)n
6 |f(x)|,

et |f | est continue par morceaux, > 0, intégrable sur [0; 1] car continue par morceaux sur ce segment.
Du théorème de convergence dominée, on déduit :

∫ 1

0

fn −→
n∞

∫ 1

0

f

c’est-à-dire :

∫ 1

0

f(x)
(

1− x

n

)n
dx −→

n∞

∫ 1

0

f(x)e−x dx

Exercice 4

Étudier (convergences simple, absolue, normale, uniforme) les séries d’applications
∑

n fn suivantes :
a) fn : R −→ R, x 7−→ sin(nx)

n2+x2
, n ∈ N+

b) fn : [0; 1] −→ R, x 7−→ n2xn(1− x)n, n ∈ N
c) fn : [0; +∞[−→ R, x 7−→ nx2

n3+x2
, n ∈ N∗

d) fn : [0; +∞[−→ R, x 7−→ x
n
e−n

2x2 , n ∈ N+

e) fn : [0; +∞[−→ R, x 7−→ n+x
x2+n2 , n ∈ N∗

f) fn : [0; +∞[−→ R, x 7−→ (−1)n
x2+n2 , n ∈ N∗

g) fn : [0; +∞[−→ R, x 7−→ (−1)n
x2+n

, n ∈ N∗..

Coerrection :

a) On a, pour tout n ∈ N∗ et tout x ∈ R :

|fn(x)| = | sinnx|
n2 + x2

6
1

n2 + x2
6

1

n2
,
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d’où :

∀n ∈ N+, ‖fn‖∞ 6
1

n2

D’après l’exemple de Riemann (2 > 1), la série
∑

n>1
1
n2 converge. Il en résulte, d’après le théorème

de majoration pour des séries à termes > 0, que la série
∑

n>1 ‖fn‖∞ converge.
On conclut que

∑
n>1 fn converge normalement sur R, donc uniformément, absolument, simplement.

b) L’étude des variations de x 7−→ x(1− x) sur [0; 1] montre : ∀x ∈ [0; 1], |x(1− x)| 6 1
4
. On a

donc : ∀n ∈ N,∀x ∈ [0; 1], |fn(x)| 6 n2

4n
, d’où :

∀n ∈ N, ‖fn‖∞ 6
n2

4n

Notons, pour tout n ∈ N : un = n2

4n
. On a :

∀n ∈ N∗, un > 0

et : un+1

un
= (n+1)2

4n+1
4n

n2 = (n+1)2

n2
1
4
−→
n∞

1
4
< 1. D’après la règle de d’Alembert, la série

∑
n>1 un

converge.
D’après le théorème de majoration pour des séries à termes > 0, la série

∑
n>1 ‖fn‖∞ converge.

Ceci montre que la série
∑

n>0 fn converge normalement sur [0; 1], donc uniformément, absolument,
simplement.
c) 1) Convergence simple, convergence absolue :
La convergence absolue revient à la convergence simple, puisque les fn sont toutes > 0. Soit
x ∈ [0; +∞[. On a :

∀n ∈ N∗, fn(x) =
nx2

n3 + x2
6
nx2

n3
=
x2

n2
.

D’après l’exemple de Riemann ( 2 > 1 ) et le théorème de majoration pour des séries à termes > 0, la
série

∑
n>1 fn(x) converge.

Ceci montre que
∑

n>1 fn converge simplement et absolument sur [0; +∞[.
2) Convergence normale, convergence uniforme :
- On a : ‖fn‖∞ > |fn(n)| = n3

n3+n2 = n
n+1
−−→
n∞

1, donc :

‖fn‖∞
-−−→

n∞
0.

D’après le cours, il en résulte que
∑

n>1 fn ne converge pas uniformément sur [0; +∞[, donc ne
converge pas normalement sur [0; +∞[.
- Soit a ∈ [0; +∞[ fixé.

On a :

∀n ∈ N∗, ∀x ∈ [0; a], |fn(x)| = nx2

n3 + x2
6
na2

n3
=
a2

n2
,

donc :
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∀n ∈ N+, ‖fn‖[0;a]∞ 6
a2

n2
.

Il en résulte, d’après l’exemple de Riemann ( 2 > 1 ) et le théorème de majoration pour des séries à
termes > 0, que la série

∑
n>1 ‖fn‖

[0;a]
∞ converge.

Ceci montre que
∑

n>1 fn converge normalement, donc uniformément, sur tout [0; a], a ∈ [0; +∞[
fixé. d) 1) Convergence simple, convergence absolue :
La convergence absolue revient à la convergence simple, puisque les fn sont toutes > 0.
Soit x ∈ [0; +∞[.
Si x > 0, alors, pour tout n ∈ N? :

0 6 fn(x) =
x

n
e−n

2x2 6 xe−nx
2

= x
(

e−x
2
)n

Puisque
∣∣∣e−x2∣∣∣ < 1, la série géométrique

∑
n>1

(
e−x

2
)n

converge, donc, par théorème de majoration
pour des séries à termes > 0, la série

∑
n>1 fn(x) converge.

Si x = 0, alors : ∀n ∈ N+, fn(x) = 0, donc la série
∑

n>1 fn(x) converge.
Ceci montre que

∑
n>1 fn converge simplement et absolument sur [0; +∞[.

2) Convergence normale, convergence uniforme :
Soit n ∈ N+. L’application fn est de classe C1 sur [0; +∞[ et, pour tout
x ∈

[
0; +∞

[
: f ′n(x) = 1

n
(1− 2n2x2) e−n

2x2 , On a donc :

∀n ∈ N+, ‖fn‖∞ = fn

(
1

n
√

2

)
=

1

n2
√

2
e−

1
2 =

1

n2
√

2e

D’après l’exemple de Riemann (2 > 1), la série
∑

n>1 ‖fn‖∞ converge.
Ceci montre que

∑
n>1 fn converge normalement, donc uniformément, sur [ 0; +∞[, et rend l’étude

de 1 ) inutile.
e) 1) Convergence simple, convergence absolue :
La convergence absolue revient à la convergence simple, puisque les fn sont toutes > 0. Soit
x ∈ [0; +∞[ fixé.
On a :

fn(x) =
n+ x

n3 + x2
∼
n∞

1

n2
> 0

D’après l’exemple de Riemann ( 2 > 1 ) et le théorème d’équivalence pour des séries à termes > 0, la
série

∑
n>1 fn(x) converge. Ceci montre que

∑
n>1 fn converge absolument et simplement sur

[0; +∞[.
2) Convergence normale, convergence uniforme :
Soit n ∈ N∗. L’application fn est de classe C1 sur [0; +∞[ et, pour tout x ∈ [0; +∞[ :

f ′n(x) =
(n3 + x2)− (n+ x)2x

(n3 + x2)2
= −x

2 + 2nx− n3

(n3 + x2)2

Par résolution d’une équation du second degré, on déduit le tableau de variations de fn, en notant
xn = −n+

√
n3 + n2 : On a donc :
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‖fn‖∞ = fn (xn)

=

√
n3 + n2

2n3 + 2n2 − 2n
√
n3 + n2

=
1

2
(√

n3 + n2 − n
)

=
1

2n3/2
(√

1 + 1
n
− 1√

n

) ≈ 1

2n3/2
> 0

D’après l’exemple de Riemann ( 3/2 > 1 ) et le théorème d’équivalence pour des séries à termes > 0,
la série

∑
n>1 ‖fn‖∞ converge. Ceci montre que

∑
n>1 fn converge normalement sur [0; +∞[, donc

uniformément, absolument, simplement, et rend inutile l’étude de 1 ). f) On a :

∀n ∈ N∗,∀x ∈
[
0; +∞

[
, |fn(x)| = 1

x2 + n2
6

1

n2
,

donc :

∀n ∈ N+, ‖fn‖∞ 6
1

n2
.

D’après l’exemple de Riemann ( 2 > 1 ) et le théorème de majoration pour des séries à termes > 0, la
série

∑
n>1 ‖fn‖∞ converge.

Ceci montre que
∑

n>1 fn converge normalement sur [0; +∞[, donc uniformément, absolument,
simplement. g) 1) Convergence simple :
Soit x ∈ [0; +∞[ fixé. La série

∑
n>1

(−1)n
x2+n

est alternée,
∣∣∣ (−1)nx2+n

∣∣∣ −−→
n∞

0, et la suite
(

1
x2+n

)
n>1

est

décroissante. D’après le TSCSA, la série
∑

n>1 fn(x) converge. Ceci montre que
∑

n>1 fn converge
simplement sur [0; +∞[. 2) Convergence absolue, convergence normale :
Soit x ∈ [0; +∞[ fixé. On a : |fn(x)| = 1

x2+n
∼
n∞

1
n
> 0. D’après l’exemple de Riemann et le

théorème d’équivalence pour des séries à termes > 0, la série
∑

n>1 |fn(x)| diverge. Ceci montre que∑
n>1 fn ne converge absolument sur aucune partie non vide de [0; +∞[. Il en résulte que

∑
n>1 fn ne

converge normalement sur aucune partie non vide de [0; +∞[. 3) Convergence uniforme :
Soit n ∈ N? fixé. Puisque, pour tout x ∈ [0; +∞[, la série

∑
n>1 fn(x) relève du TSCSA, en notant

Rn(x) le reste d’ ordre n, on a, pour tout x ∈ [0; +∞[ :

|Rn(x)| 6 |fn+1(x)| = 1

x2 + (n+ 1)
6

1

n+ 1
,

donc :

‖Rn‖∞ 6
1

n+ 1

Il en résulte : ‖Rn‖∞ −−→n∞ 0, et on conclut, d’après le cours, que
∑

n>1 fn converge uniformément sur

[0; +∞[.

Exercice 5

On note, pour tout n ∈ N∗ : fn :
[
0; +∞

[
−→ R, x 7−→ (−1)n e−nx

n+x
.
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a) Étudier les convergences de la série d’applications
∑

n>1 fn.
b) Montrer que la somme S =

∑+∞
n=1 fn est continue sur [0; +∞[.

Solution :

a) 1) Convergence simple :
Soit x ∈ [0; +∞[ fixé. La série

∑
n>1 fn(x) est alternée, |fn(x)| = e−nx

n+x
−−→
n∞

0, et la suite

(|fn(x)|)n>1 est décroissante. D’après le TSCSA, il en résulte que la série
∑

n>1 fn(x) converge. On
conclut :

∑
n>1 fn converge simplement sur [0; +∞[.

2) Convergence absolue :
Soit x ∈ [0; +∞[ fixé.
- Cas x 6= 0. On a :

∀n ∈ N, |fn(x)| = e−nx

n+ x
6 e−nx =

(
e−x
)n
.

Comme |e−x| < 1, la série géométrique
∑

n>1 (e−x)
n converge. Par théorème de majoration pour des

séries à termes > 0, la série
∑

n>1 |fn(x)| converge.
- Cas x = 0. On a : ∀n ∈ N+, |fn(x)| = 1

n
, donc la série

∑
n>1 |fn(x)| diverge.

On conclut :
∑

n>1 fn converge absolument sur ]0; +∞[, mais non sur [0; +∞[.

3) Convergence normale :
- Étude sur 10; +∞[ :
Soit n ∈ N+. Comme |fn(x)| = e−nx

n+x
−→
x−→0+

1
n

, on a : ‖fn‖∞ > 1
n

, et donc, d’après l’exemple de

Riemann et le théorème de minoration pour des séries à termes > 0, la série
∑

n>1 ‖fn‖
10;+∞
∞ diverge.

Ceci montre que
∑

n>1 fn ne converge pas normalement sur ]0; +∞[.
- Étude sur [a; +∞[, a ∈]0; +∞[ fixé :
Soit a ∈]0; +∞[ fixé. On a : ∀n ∈ N∗,∀x ∈ [a; +∞[,

|fn(x)| = e−nx

n+ x
6

e−nx

n
6 e−nx 6 e−na,

d’où :

∀n ∈ N+, ‖fn‖|a;+∞|∞ 6
(
e−a
)n
.

Puisque |e−α| < 1, la série géométrique
∑

n>1 (e−α)
n converge.

Par théorème de majoration pour des séries à termes > 0, on conclut que
∑

n=1 fn converge
normalement sur [a; +∞[, pour tout a ∈]0; +∞[ fixé.
4) Convergence uniforme :
Puisque, pour tout x ∈ [0; +∞ [ , la série

∑
n>1 fn(x) relève du TSCSA, on a, en notant Rn le reste

d’ordre n : ∀n ∈ N∗,∀x ∈ [0; +∞[,

|Rn(x)| 6 |fn+1(x)| = e−(n+1)x

(n+ 1) + x
6

1

n+ 1
,

d’où :
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∀n ∈ N∗, ‖Rn‖∞ 6
1

n+ 1
,

puis :

‖Rn‖∞ −−→n∞ 0.

Ceci montre que
∑

n>1 fn converge uniformément sur [0; +∞[.
b) Puisque, pour tout n ∈ N+, fn est continue sur [0; +∞[ et que

∑
n>1 fn converge uniformément

sur [0; +∞[, d’après un théorème du cours, on conclut que la somme S est continue sur [0; +∞[.

Exercice 7

On note, pour tout n ∈ N+ : fn :
[
0; +∞

[
−→ R, x 7−→ ln(n+x)

n2 .

a) Étudier la convergence simple de la série d’applications
∑

n>1 fn.
On note S la somme.
b) Montrer que S est de classe C2 sur [0; +∞ [ et exprimer, pour tout x ∈ [0; +∞ [, S ′(x) et S ′′(x)
sous forme de sommes de séries.
c) En déduire que S est strictement croissante sur [0; +∞[ et que S est concave sur [0; +∞[.

Solution :

a) Soit x ∈ [0; +∞[ fixé. On a :

fn(x) =
ln(n+ x)

n2
=

lnn+ ln
(
1 + x

n

)
n2

∼
n∞

lnn

n2
> 0

Puisque la série
∑

n>1
lnn
n2 converge , par théorème d’équivalence pour des séries à termes > 0, la

série
∑

n>1 fn(x) converge.
On conclut :

∑
n>1 fn converge simplement sur [0; +∞[.

b) • Pour tout n ∈ N+, fn est de classe C2 sur [0; +∞[ et, pour tout x ∈ [0; +∞[ :

f ′n(x) =
1

(n+ x)n2
, f ′′n(x) = − 1

(n+ x)2n2

- Puisque : ∀n ∈ Nα, ‖f ′′n‖∞ = 1
n4 , d’après l’exemple de Riemann (4 > 1), la série

∑
n>1 f

′′
n

converge normalement, donc uniformément, sur [0; +∞[.
- Puisque : ∀n ∈ N+, ‖fn‖∞ = 1

n3 , d’après l’exemple de Riemann (3 > 1), la série
∑

n>1 f
′
n

converge normalement, donc uniformément, sur [0; +∞[. - On a vu en a ) que
∑

n>1 fn converge
simplement sur [0; +∞[.
D’après le théorème de dérivation pour les séries d’applications, on conclut que S est de classe C2

sur [0; +∞[ et que, pour tout x ∈ [0; +∞[ :

S ′(x) =
+∞∑
n=1

1

(n+ x)n2
, S ′′(x) =

+∞∑
n=1

− 1

(n+ x)2n2



26 CHAPITRE 2. SUITE ET SÉRIE DES FONCTIONS

c) 1) D’ après b), S est de classe C1 sur [ 0; +∞[ et, pour tout x ∈ [0; +∞ [, S ′(x) est la somme d’une
série à termes tous > 0, donc S ′(x) > 0. On conclut que S est strictement croissante sur [0; +∞[.
2) D’après b ), S est de classe C2 sur [0; +∞[, et, pour tout x ∈ [0; +∞ [, S ′′(x) est la somme d’une
série à termes tous 6 0, donc S ′′(x) 6 0. On conclut que S est concave sur [0; +∞[.

Exercice 8

Soit f0 : R −→ R, bornée, > 0. Étudier la convergence simple et la convergence uniforme de la suite
d’applications (fn : R −→ R)n∈N définie par :

∀n ∈ N,∀x ∈ R, fn+1(x) =
√

1 + fn(x)

Solution :

Une récurrence immédiate montre que, pour tout n ∈ N et tout x ∈ R, fn(x) existe et fn(x) > 0.
Considérons l’application

ϕ : [0; +∞[−→ R, t 7−→
√

1 + t

et cherchons les éventuels points fixes de ϕ.
On a, pour tout t ∈ [0; +∞[, ϕ(t) > 0 et :

ϕ(t) = t⇐⇒ 1 + t = t2 ⇐⇒ t2 − t− 1 = 0

⇐⇒ t =
1 +
√

5

2
, noté α.

Essayons de montrer que la suite (fn)n∈N converge uniformément sur R vers la fonction constante α.
Soient n ∈ N, x ∈ R. On a, par utilisation d’une expression conjuguée :

|fn+1(x)− α| =
∣∣∣√1 + fn(x)−

√
1 + α

∣∣∣
=

|fn(x)− α|√
1 + fn(x) +

√
1 + α

6
1

2
|fn(x)− α| .

Une récurrence immédiate montre :

∀x ∈ R,∀n ∈ N, |fn(x)− α| 6 1

2n
|f0(x)− α| ,

d’où : ∀x ∈ R,∀n ∈ N,

|fn(x)− α| 6 1

2n
(f0(x) + α) 6

1

2n
(‖f0‖∞ + α)

Il en résulte que, pour tout n ∈ N, fn est bornée et que :
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‖fn − α‖∞ 6
1

2n
(‖f0‖∞ + α) −→

n∞
0

On conclut : fn
C.U−−→
n∞

α sur R, où α est la fonction constante égale à α.
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Chapitre 3
Séries entières

Exercice 1

Déterminer le rayon de convergence R des séries entières suivantes :
a)
∑

n≥0
n2+1
n3+2

zn b)
∑

n>0(
√
n+ 2−

√
n)zn c)

∑
n≥0

2n+n2

3n−n2 z
n

d)
∑

n>1

ln(n2+1)
ln(n3+1)

zn e)
∑

n≥0
(
2n
n

)
zn f)

∑
n>0 esinnzn.

Solution :

Notons, dans chaque exemple, an le coefficient de la série entière envisagée.
a) On a :

an =
n2 + 1

n3 + 2
≈ 1

n
,

puis, pour tout z ∈ Cφ :

∣∣∣∣an+1z
n+1

anzn

∣∣∣∣ ∼n∞ n

n+ 1
|z| −→

n∞
|z|,

donc, d’après la règle de d’Alembert : R = 1.
b) On a : an =

√
n+ 2−

√
n = 2√

n+2+
√
n
∼ 1√

n
, puis, pour tout z ∈ Cφ :

∣∣∣∣an+1z
n+1

anzn

∣∣∣∣ ∼n∞
√
n√

n+ 1
|z| −→

n∞
|z|,

donc, d’après la règle de d’Alembert : R = 1.
c) On a :

an =
2n + n2

3n − n2
≈ 2n

3n
,

puis, pour tout z ∈ Cφ :

29
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∣∣∣∣an+1z
n+1

anzn

∣∣∣∣ ∼n∞ 2n+1

3n+1

3n

2n
|z| = 2

3
|z| −→

n∞

2

3
|z|,

donc, d’après la règle de d’Alembert : R = 3
2
.

d) On a :

an =
ln (n2 + 1)

ln (n3 + 1)
=

2 lnn+ ln
(
1 + 1

n2

)
3 lnn+ ln

(
1 + 1

n3

) −→
n∞

2

3
,

puis, pour tout z ∈ C+ :

∣∣∣∣an+1z
n+1

anzn

∣∣∣∣ =

∣∣∣∣an+1

an

∣∣∣∣ |z| −→n∞ |z|,
donc, d’après la règle de d’Alembert : R = 1.
e) On a, pour tout z ∈ Cφ :

∣∣∣∣an+1z
n+1

anzn

∣∣∣∣ =

(
2n+ 2

n+ 1

)(
2n

n

)−1
|z|

=
(2n+ 2)!

((n+ 1)!)2
(n!)2

(2n)!
|z| = (2n+ 2)(2n+ 1)

(n+ 1)2
|z| −−→

n∞
4|z|,

donc, d’après la règle de d’Alembert : R = 1
4
.

f) On a : ∀n ∈ N, 0 6 e−1 6 esinn 6 e1.
Les séries entières

∑
n>0 e−1zn et

∑
n>0 ezn sont de rayon 1 (séries géométriques, ou règle de

d’Alembert), donc, par théorème d’encadrement pour les rayons : R = 1.

Exercice 2

Calculer le rayon de convergence et la somme des séries entières suivantes ( z : variable complexe, x :
variable réelle) :
a)
∑

n≥0 n
2xn b)

∑
n>1

(n+1)2

n
xn c)

∑
n>0

n3+n2−1
n+1

xn

d)
∑

n≥0 (n2 + 1) (−1)nx2n e)
∑

n>1
n+1
n!
zn f)

∑
n>1 n

(−1)nxn.

Solution :

a) La règle de d’Alembert montre : R = 1.

On a :

∀x ∈]− 1; 1[,
+∞∑
n=0

xn =
1

1− x
,

d’où, en dérivant :
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∀x ∈]− 1; 1[,
+∞∑
n=1

nxn−1 =
1

(1− x)2

puis, en multipliant par x :

∀x ∈]− 1; 1[,
+∞∑
n=1

nxn =
x

(1− x)2
= x(1− x)−2

puis, en dérivant : ∀x ∈]− 1; 1[,

+∞∑
n=1

n2xn−1 = (1− x)−2 + 2x(1− x)−3 =
1 + x

(1− x)3

puis, en multipliant par x et en remarquant que le terme d’indice 0 est nul :

∀x ∈]− 1; 1[, S(x) =
+∞∑
n=0

n2xn =
x(1 + x)

(1− x)3

Réponse : R = 1 et :

∀x ∈]− 1; 1

[
, S(x) =

x(1 + x)

(1− x)3

b) L’utilisation d’un équivalent et la règle de d’Alembert montrent : R = 1. On a, pour tout
x ∈]− 1; 1[ :

S(x) =
+∞∑
n=1

(n+ 1)2

n
xn =

+∞∑
n=1

(
n+ 2 +

1

n

)
xn

=
+∞∑
n=1

nxn + 2
+∞∑
n=1

xn +
+∞∑
n=1

xn

n

car ces trois séries entières sont de rayon 1 . On sait :

∀x ∈]− 1; 1[,
+∞∑
n=0

xn =
1

1− x
.

donc : ∀x ∈]− 1; 1[,
∑+∞

n=1 x
n = 1

1−x − 1 = x
1−x . D’autre part, en dérivant, on obtient :

∀x ∈]− 1; 1[,
+∞∑
n=1

nxn−1 =
1

(1− x)2
.

puis, en multipliant par x :

∀x ∈]− 1; 1[,
+∞∑
n=1

nxn =
x

(1− x)2
.
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Enfin, on sait : ∀x ∈]− 1; 1[,
∑+∞

n=1
xn

n
= − ln(1− x). En combinant linéairement, on en déduit S(x).

Réponse : R = 1 et :

∀x ∈]− 1; 1[, S(x) =
3x− 2x2

(1− x)2
− ln(1− x).

c) L’utilisation d’un équivalent et la règle de d’Alembert montrent : R = 1.
On a, pour tout x ∈]− 1; 1[ :

S(x) =
+∞∑
n=0

n3 + n2 − 1

n+ 1
xn =

+∞∑
n=0

(
n2 − 1

n+ 1

)
xn

=
+∞∑
n=0

n2xn︸ ︷︷ ︸
notée A(x)

−
+∞∑
n=0

1

n+ 1
xn︸ ︷︷ ︸

notée B(x)

,

car ces deux séries entières sont de rayon 1 .
On a calculé A(x) dans a) : A(x) = x(1+x)

(1−x)3 . D’autre part, si x 6= 0 :

B(x) =
1

x

+∞∑
n=0

xn+1

n+ 1
=

1

x

+∞∑
n=1

xn

n
= −1

x
ln(1− x),

et on a B(0) = 1, terme constant de la série entière définissant B(x).
Réponse : R = 1 et pour tout x ∈]− 1 ; 1[ :

S(x) =

{
x(1+x)
(1−x)3 + 1

x
ln(1− x) si x 6= 0

1 si x = 0

d) • Soit x ∈ R+. Notons, pour tout n ∈ N :

un =
∣∣(n2 + 1

)
(−1)nx2n

∣∣ =
(
n2 + 1

)
x2n

On a : un+1

un
= (n+1)2+1

n2+1
|x|2 −−→

n∞
|x|2, donc, d’ après la règle de d’ Alembert : R = 1. * On a, pour tout

x ∈]− 1; 1[ :

S(x) =
+∞∑
n=0

(
n2 + 1

)
(−1)nx2n =

+∞∑
n=0

(
n2 + 1

) (
−x2

)n
=

+∞∑
n=0

n2
(
−x2

)n
+

+∞∑
n=0

(
−x2

)n
car ces deux séries entières sont de rayon 1 . D’une part, par série géométrique :

+∞∑
n=0

(
−x2

)n
=

1

1− (−x2)
=

1

1 + x2

D’autre part, d’ après l’exercice a ) :



33

∀t ∈]− 1; 1

[
,
+∞∑
n=0

n2tn =
t(1 + t)

(1− t)3

puis en remplaçant t par −x2 ∈]− 1; 1[ :

+∞∑
n=0

n2
(
−x2

)n
=
−x2 (1− x2)

(1 + x2)3

Réponse : R = 1 et :

∀x ∈]− 1; 1

[
, S(x) =

−x2 (1− x2)
(1 + x2)3

+
1

1 + x2

e) · On a, pour tout z ∈ C :

∣∣∣∣an+1z
n+1

anzn

∣∣∣∣ =
n+ 2

(n+ 1)!

n!

n+ 1
|z|

=
n+ 2

(n+ 1)2
|z| ∼

n∞

1

n
|z| −−→

n∞
0,

donc, d’ après la règle de d’Alembert : R = +∞.
- On a, pour tout z ∈ C :

S(z) =
+∞∑
n=0

n+ 1

n!
zn = 1 +

+∞∑
n=1

n+ 1

n!
zn

= 1 +
+∞∑
n=1

(
1

(n− 1)!
+

1

n!

)
zn

= 1 +
+∞∑
n=1

zn

(n− 1)!
+

+∞∑
n=1

zn

n!

car ces deux séries entières sont de rayon infini

=
+∞∑
n=0

zn+1

n!
+

+∞∑
n=0

zn

n!
= (1 + z)

+∞∑
n=0

zn

n!
= (1 + z)ez.

Réponse : R = +∞ et : ∀z ∈ C, S(z) = (1 + z)ez.
f)On a : ∀n ∈ N∗, 1

n
6 |an| 6 n.

Comme les deux séries entières
∑

n>1
1
n
zn et

∑
n>1 z

n sont de rayon 1, par théorème d’encadrement :
R = 1. - Soit x ∈]− 1; 1[. Pour séparer les termes d’indices pairs, d’indices impairs, nous allons
travailler sur des sommes partielles.
On a, pour tout N ∈ N :

2N+1∑
n=1

n(−1)nxn =
N∑
p=1

2px2p +
N∑
p=0

1

2p+ 1
x2p+1
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Comme les trois séries entières qui interviennent sont de rayon 1 , on déduit, en faisant tendre l’entier
N vers l’infini :

S(x) =
+∞∑
p=1

2px2p︸ ︷︷ ︸
notée A(x)

+
+∞∑
p=0

x2p+1

2p+ 1︸ ︷︷ ︸
notée B(x)

.

On a, d’après la série géométrique :

∀t ∈]− 1; 1[,
+∞∑
n=0

tn =
1

1− t
,

d’où, en dérivant :

∀t ∈]− 1; 1[,
+∞∑
n=1

ntn−1 =
1

(1− t)2

puis, en multipliant par t :

∀t ∈]− 1; 1

[
,
+∞∑
n=1

ntn =
t

(1− t)2

Il s’ensuit :

∀x ∈]− 1; 1

[
, A(x) = 2

+∞∑
p=1

p
(
x2
)p

= 2
x2

(1− x2)2

D’autre part :

∀x ∈]− 1; 1[, B(x) =
+∞∑
p=0

x2p+1

2p+ 1
=

1

2
ln

1 + x

1− x

Réponse : R = 1 et :

∀x ∈]− 1; 1[, S(x) =
2x2

(1− x2)2
+

1

2
ln

1 + x

1− x

Exercice 3

Pour les fonctions f des exemples suivants, où l’on donne f(x)(x : variable réelle), montrer que f est
dSE(0) et calculer son DSE(0) ; préciser le rayon de convergence R. a) x3+2

x2−1 b) 1
x4−3x2+2

c) (1− x) ln(1− x) d) ln (x2 − 8x+ 15)
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solution

a) La fonction f : x 7−→ x3+2
x2−1 est définie sur R− {−1, 1}, donc au moins sur ]− 1; 1[, et on a, par

une décomposition en éléments simples immédiate, pour tout x ∈]− 1; 1[ :

f(x) = x+ x+2
x2−1 = x+ x+2

(x−1)(x+1)

= x+ 3
2

1
x−1 −

1
2

1
x+1

= x− 3
2

1
1−x −

1
2

1
1+x

= x− 3
2

∑+∞
n=0 x

n − 1
2

∑+∞
n=0(−1)nxn

= x+
+∞∑
n=0

(
−3

2
− 1

2
(−1)n

)
xn =

+∞∑
n=0

anx
n

en notant : an =

{
−3

2
− 1

2
(−1)n si n 6= 1

0 si n = 1

ou encore : an =


−1 si n = 2p+ 1, p ∈ N∗
−2 si n = 2p, p ∈ N
0 si n = 1.

Déterminons le rayon R de cette série entière. D’une part, puisque la suite (an)n ne converge pas vers
0 , on a : R 6 1.
D’autre part, puisque (an)n est bornée, on a : R > 1.
On conclut : R = 1.
b) La fonction

f : x 7−→ 1

x4 − 3x2 + 2
=

1

(x2 − 1) (x2 − 2)

est définie sur R− {−
√

2,−1, 1,
√

2}, donc (au moins) sur ]- 1; 1 [ et on a, par une décomposition en
éléments simples immédiate, pour tout x ∈]− 1; 1[ :

f(x) =
1

(x2 − 1) (x2 − 2)

= − 1

x2 − 1
+

1

x2 − 2
=

1

1− x2
− 1

2

1

1− x2

2

=
+∞∑
n=0

(
x2
)n − 1

2

+∞∑
n=0

(
x2

2

)n
=

+∞∑
n=0

(
1− 1

2n+1

)
x2n

Puisque 1− 1
2n+1 ∼

n∞
1 et que la série entière

∑
n>0 x

2n est de rayon 1, par théorème d’équivalence,
on a : R = 1.
c) La fonction f : x 7−→ (1− x) ln(1− x) est définie que ]−∞; 1[, donc (au moins) sur ]− 1; 1[. On
a, pour tout x ∈]− 1; 1[ :

f(x) = (1− x) ln(1− x) = −(1− x)
+∞∑
n=1

xn

n

= −
+∞∑
n=1

xn

n
+

+∞∑
n=1

xn+1

n
= −

+∞∑
n=1

xn

n
+

+∞∑
n=2

xn

n− 1

=− x+
+∞∑
n=2

(
− 1

n
+

1

n− 1

)
xn = −x+

+∞∑
n=2

1

(n− 1)n
xn
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On peut considérer que ce dernier résultat constitue la réponse à la question posée. On peut aussi se
ramener précisément à une série entière :

∀x ∈]− 1; 1[, f(x) =
+∞∑
n=0

anx
n,

où, pour tout n ∈ N : an =


0 si n = 0
−1 si n = 1
1

(n−1)n si n > 2.
Par la règle de d’Alembert : R = 1.

d) On a : X2 − 8X + 15 = (X− 3)(X− 5).
La fonction f : x 7−→ ln (x2 − 8x+ 15) est définie sur ]−∞; 3[∪]5; +∞[, donc (au moins) sur ] -
3; 3[. On a, pour tout x ∈]− 3; 3[ (en faisant attention à ne mettre des logarithmes que sur des
nombres > 0 ) :

f(x) = ln((x− 3)(x− 5))

= ln(3− x) + ln(5− x)

= ln 3 + ln
(

1− x

3

)
+ ln 5 + ln

(
1− x

5

)
= ln 15−

+∞∑
n=1

1

n

(x
3

)n
−

+∞∑
n=1

1

n

(x
5

)n
= ln 15−

+∞∑
n=1

1

n

(
1

3n
+

1

5n

)
xn

On peut considérer que ce dernier résultat constitue la réponse à la question posée. On peut aussi se
ramener précisément à une série entière :

∀x ∈]− 3; 3[, f(x) =
+∞∑
n=0

anx
n.

où a0 = ln 15 et an = − 1
n

(
1
3n

+ 1
5n

)
pour tout n > 1.

On a |an| ∼
n∞

1
n3n

noté bn, et, pour tout x ∈ R+fixé :

∣∣∣∣bn+1x
n+1

bnxn

∣∣∣∣ =
n3n

(n+ 1)3n+1
|x| = n

n+ 1

|x|
3
−→
n∞

|x|
3
.

On en déduit, d’après la règle de d’Alembert et le théorème d’équivalence : R = 3.

Exercice 4

Trouver

lim
n∞

n∏
k=0

3
2k
k
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solution

En notant, pour tout n ∈ N, Pn =
∏n

k=0 3
k
π ,

on a Pn > 0 et : lnPn =
∑n

k=0
2k

k!
ln 3 =

(∑n
k=0

2k

k!

)
ln 3, donc :

lnPn −→
n∞

(
+∞∑
k=0

2k

k!

)
ln 3 = e2 ln 3

puis, par continuité de l’exponentielle :

Pn −→
n∞

ee
2 ln 3 = 3c2

On conclut :

lim
n∞

n∏
k=0

3
2k

n = 3c
2

Exercice 5

Soient
∑

n anz
n, une série entière, R son rayon de convergence.

Déterminer les rayons de convergence des séries entières
∑

n a
2
nz

n,
∑

n anz
2n.

solution

1) Notons R′ le rayon de la série entière
∑

n a
2
nz

n.
On a, pour tout entier n et tout z ∈ C :

∣∣a2nzn∣∣ =
(∣∣∣an (|z| 12)n∣∣∣)2

- Si |z| 12 < R, alors
∣∣∣an (|z| 12)n∣∣∣ −−→

n∞
0, donc |a2nzn| −−→

n∞
0, d’où : |z| 6 R′.

- Si |z| 12 > R, alors la suite
(∣∣∣an (|z| 12)n∣∣∣)

n
n’est pas bornée, donc la suite (|a2nzn|)n n’est pas

bornée, d’où |z| > R′.
On a montré :

∀z ∈ C,
{
|z| < R2 =⇒ |z| 6 R′

|z| > R2 =⇒ |z| > R′

d’où :

R2 6 R′ et R2 > R′

et on conclut : R′ = R2.
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2) Notons R′′ le rayon de la série entière
∑

n anz
2n.

On a, pour tout entier n et tout z ∈ C :

anz
2n = an

(
z2
)n

- Si |z2| < R, alors an |z2|n −−→
n∞

0, donc : |z| 6 R′′.

- Si |z2| > R, alors la suite
(
an (z2)

n)
n

n’est pas bornée, donc la suite (anz
2n)n n’est pas bornée,

d’où : |z| > R′′.

On a montré : ∀z ∈ C,
{
|z| < R

1
2 =⇒ |z| 6 R′′

|z| > R
1
2 =⇒ |z| > R′′,

d’où :

R
1
2 6 R′′ et R

1
2 > R′′

et on conclut : R′′ = R
1
2 .

Exercice 6

Soient
∑

n anz
n, une série entière, R son rayon de convergence.

Montrer que R > 0 si et seulement si la suite
(
|an|

1
n

)
n>1

est majorée.

solution

1) Supposons R > 0.
Il existe ρ ∈ R tel que 0 < ρ < R, par exemple : ρ = R

2
.

Puisque |ρ| < R, la suite (anρ
n)n>1 est bornée. Il existe donc C ∈ R+

+tel que : ∀n > 1, |anρn| 6 C,
d’où :

∀n > 1, |an|? 6
1

ρ
C?.

Comme C
1
2 −−→

n∞
1, la suite

(
C

1
2

)
n>1

est bornée.

Il existe donc D ∈ R+tel que : ∀n > 1, C
1
k 6 D.

On a alors : ∀n > 1, |an|
1
π 6 D

ρ
, ce qui montre que la suite

(
|an|

1
n

)
n>1

est majorée.

2) Réciproquement, supposons que la suite
(
|an|

1
n

)
n-1

est majorée.

Il existe donc M ∈ R+
+tel que : ∀n > 1, |an|

1
n 6M .

On a alors : ∀n > 1, |an| 6Mn.
Comme la série entière

∑
n>1M

nzn est de rayon 1
M

(série géométrique), il en résulte que la série
entière

∑
n>1 anz

n est de rayon > 1
M

, donc de rayon supérieur strictement à 0 .

Exercice 7

On note, pour tout n ∈ N∗ : an =
∑+∞

k=n
1

k(k+n)
.
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a) 1) Montrer que, pour tout n ∈ N∗, an existe.
2) Établir :

∀n ∈ N+, an =
1

n
(H2n−1 − Hn−1) ,

où on a noté H0 = 0 et, pour tout n ∈ N+,Hn =
∑n

k=1
1
k
.

On pourra utiliser : Hn = lnn+ γ + o
n∞

(1), où γ est la constante d’Euler. 3) En déduire un équivalent
simple de an lorsque l’entier n tend vers l’infini.
b) On considère la série entière

∑
n>1 anx

n, où la variable x est réelle, et on note R son rayon de
convergence.
1) Déterminer R.
2) Quelles sont les natures des séries numériques

∑
n>1 anR

n,
∑

n>1 an(−R)n ?

solution

a) 1) Pour n ∈ N+fixé, 1
k(k+n)

∼
k∞

1
k2

> 0, donc, par l’exemple de Riemann ( 2 > 1 ) et le théorème

d’équivalence pour des séries à termes > 0, la série
∑

k
1

k(k+n)
converge, an =

∑+∞
k=n

1
k(k+n)

existe.
2) Soit n ∈ N+. On a, pour tout N > n :

N∑
k=n

1

k(k + n)
=

1

n

N∑
k=n

(
1

k
− 1

k + n

)

=
1

n

(
N∑
k=n

1

k
−

N∑
k=n

1

k + n

)
=

1

n

(
N∑
k=n

1

k
−

N+n∑
k=2n

1

k

)
=

1

n
((HN − Hn−1)− (HN+n − H2n−1))

=
1

n

[(
(lnN + γ + o

N∞
(1))− Hn−1

)
− ((ln(N + n) + γ + o(1))− H2n−1)

=
1

n
ln

N

N + n
+

1

n
(H2n−1 − Hn−1) +

1

n
o(1).

Pour n ∈ N? fixé, en faisant tendre l’entier N vers l’infini, on obtient :

an =
+∞∑
k=n

1

k(k + n)
=

1

n
(H2n−1 − Hn−1) .

3) On a donc : an = 1
n

(H2n−1 − Hn−1)

=
1

n
((ln(2n− 1) + γ + o

n∞
(1))− (ln(n− 1) + γ + o(1)))

=
1

n
ln

2n− 1

n− 1
+ o

(
1

n

)
=

1

n
ln(2 + o(1)) + o

(
1

n

)
=

ln 2

n
+ o

(
1

n

)
∼
n∞

ln 2

n
.
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b) 1) Puisque an ' ln 2
n

, et que la série entière
∑

n≥1
xn

n
est de rayon 1 , par théorème d’équivalence,

le rayon R de la série entière
∑

n>1 anx
n est : R = 1.

2) - Nature de la série de terme général anRn :

On a : anRn = an ∼
n∞

ln 2
n

, donc, d’après l’exemple de Riemann et le théorème d’équivalence pour des

séries à termes > 0, la série
∑

n>1 anR
n diverge. - Nature de la série de terme général an(−R)n :

Il s’agit de la série
∑

n>1(−1)nan, puisque R = 1. Cette série est alternée, et an −−→
n∞

0, car

an ∼
n∞

ln 2
n

. On a, pour tout n > 1 :

an+1 =
+∞∑

k=n+1

1

k(k + n+ 1)

6
+∞∑

k=n+1

1

k(k + n)
6

+∞∑
k=n

1

k(k + n)
= an,

donc (an)n>1 est décroissante.
D’après le TSCSA, on conclut que la série

∑
n>1(−1)nan converge.

Finalement, la série
∑

n>1 an(−R)n converge.



Chapitre 4
Séries de Fourier

Exercice 1

Soit f : R −→ R, 2π-périodique, paire, telle que, pour tout t ∈ [0;π] :

f(t) = 1 si 0 6 t <
π

2
, f(t) = 0 si t =

π

2
, f(t) = −1 si

π

2
< t 6 π.

a) Vérifier f ∈ CM2π et calculer les coefficients de Fourier (trigonométriques) de f .
b) Étudier les convergences de la série de Fourier de f et préciser sa somme.
c) En déduire les sommes de séries suivantes :

∑+∞
p=0

(1)p

2p+1
,
∑+∞

p=0
1

(2p+1)2
,
∑+∞

n=1
1
n2 .

solution

Il est clair que f est 2π-périodique et continue par morceaux sur R donc f ∈ CM2π, et les
coefficients de Fourier (trigonométriques) an, bn(n ∈ N) de f existent.
Puisque f est paire, on a : ∀n ∈ N+, bn = 0.
On a, pour tout n ∈ N, en utilisant la parité de f :

an =
2

2π

∫ π

−π
f(t) cosnt dt =

2

π

∫ π

0

f(t) cosnt dt

=
2

π

(∫ π
2

0

cosnt dt−
∫ π

π
2

cosnt dt

)

On a donc a0 = 0, et, pour tout n > 1 :

an =
2

πn

(
[sinnt]

π/2
0 − [sinnt]ππ/2

)
=

4

πn
sin
(
n
π

2

)
.

On a donc, pour tout p ∈ N :

a2p = 0 et a2p+1 =
4(−1)p

π(2p+ 1)

41
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b) Puisque f est 2π-périodique et de classe C1 par morceaux, d’après le théorème de Dirichlet de
convergence simple, la série de Fourier de f converge simplement sur R et a pour somme la
régularisée f̃ de f .
On a donc, pour tout t ∈ R :

f̃(t) =
1

2

(
f
(
t+
)

+ f
(
t−
))

=
+∞∑
p=0

4(−1)p

π(2p+ 1)
cos(2p+ 1)t

c) - En remplaçant t par 0 dans le résultat de b ), on obtient :

+∞∑
p=0

4(−1)p

π(2p+ 1)
= 1, donc :

+∞∑
p=0

(−1)p

2p+ 1
=
π

4

- Puisque f ∈ CM2π, d’après la formule de Parseval réelle, on a :

a20
4

+
1

2

+∞∑
n=1

(
a2n + b2n

)
=

1

2π

∫ π

−π
(f(t))2 dt

c’est-à-dire ici : 1
2

∑+∞
p=0

16
π2(2p+1)2

= 1
π

∫ π
0

dt = 1, d’où :
∑+∞

p=0
1

(2p+1)2
= π2

8
.

- Soit N ∈ N. On a, en séparant les termes d’indices pairs, d’indices impairs :

2N+1∑
n=1

1

n2
=

N∑
p=1

1

(2p)2
+

N∑
p=0

1

(2p+ 1)2

D’où, en faisant tendre l’entier N vers l’infini, et puisque les séries qui interviennent convergent :

+∞∑
n=1

1

n2
=

1

4

+∞∑
p=1

1

p2
+

+∞∑
p=0

1

(2p+ 1)2

donc :

+∞∑
n=1

1

n2
=

1

1− 1
4

+∞∑
p=0

1

(2p+ 1)2
=

4

3

π2

8
=
π2

6

Réponse :

+∞∑
p=0

(−1)p

2p+ 1
=
π

4
,
+∞∑
p=0

1

(2p+ 1)2
=
π2

8
,
+∞∑
n=1

1

n2
=
π2

6
.

Exercice 2

Soit f : R −→ R, 2π-périodique, impaire, telle que :

f(t) = t si 0 6 t <
π

2
, f(t) = π − t si

π

2
6 t 6 π.
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a) Vérifier f ∈ CM2π et calculer les coefficients de Fourier (trigonométriques) de f .
b) Étudier les convergences de la série de Fourier de f et préciser sa somme.
c) En déduire les sommes de séries suivantes :

+∞∑
p=0

1

(2p+ 1)2
,

+∞∑
n=1

1

n2
,

+∞∑
p=0

1

(2p+ 1)4
,

+∞∑
n=1

1

n4

solution

Il est clair que f est 2π-périodique et continue par morceaux sur R (et même, continue sur R ), donc
f ∈ CM2π et les coefficients de Fourier (trigonométriques) an, bn, (n ∈ N) de f existent.
Puisque f est impaire, on a : ∀n ∈ N, an = 0. On a, pour tout n ∈ N+, en utilisant l’imparité de f :

bn =
2

2π

∫ π

−π
f(t) sinnt dt =

2

π

∫ π

0

f(t) sinnt dt

=
2

π

(∫ π/2

0

t sinnt dt+

∫ π

π/2

(π − t) sinnt dt

)

u = π̄ − t 2

π

(∫ π/2

0

t sinnt dt+

∫ π/2

0

u sin(nπ − nu)du

)

=
2

π

(∫ π/2

0

t sinnt dt− (−1)n
∫ π/2

0

u sinnu du

)

=
2

π
(1 + (−1)n)

∫ π/2

0

t sinnt dt

Il s’ensuit : ∀p ∈ N+, b2p = 0, et, pour tout p ∈ N, grâce à une intégration par parties :

b2p+1 =
4

π

∫ π/2

0

t sin(2p+ 1)t dt

=
4

π

([
−tsin(2p+ 1)t

2p+ 1

]π/2
0

+

∫ π/2

0

cos(2p+ 1)t

2p+ 1
dt

)

=
4

π

[
sin(2p+ 1)t

2p+ 1

]π/2
0

=
4(−1)p

π(2p+ 1)2

b) Puisque f est 2π-périodique, de classe C1 par morceaux sur R et continue sur R, d’après le
théorème de Dirichlet de convergence normale, la série de Fourier de f converge normalement (donc
uniformément, absolument, simplement) sur R et a pour somme f . On a donc :
∀t ∈ R, f(t) =

∑+∞
p=0

4(−1)p
π(2p+1)2

sin(2p+ 1)t. Remarque : La convergence normale résulte aussi de :

∀p ∈ N,∀t ∈ R,
∣∣∣∣ 4(−1)p

(2p+ 1)2
sin(2p+ 1)t

∣∣∣∣ 6 4

π(2p+ 1)2

et de la convergence de la série numérique
∑

p>0
1

(2p+1)2
. c) • En remplaçant t par π

2
dans le résultat

de b ), on obtient : donc :
∑+∞

p=0
1

(2p+1)2
= π2

8
.

- On a, pour tout N ∈ N?, en séparant les termes d’indices pairs, d’indices impairs :
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2N+1∑
n=1

1

n2
=

N∑
p=1

1

(2p)2
+

N∑
p=0

1

(2p+ 1)2

D’où, en faisant tendre l’entier N vers l’infini, et puisque les séries qui interviennent convergent :

+∞∑
n=1

1

n2
=

1

4

+∞∑
p=1

1

p2
+

+∞∑
p=0

1

(2p+ 1)2

d’où :
∑+∞

n=1
1
n2 = 1

1− 1
4

∑+∞
p=0

1
(2p+1)2

= 4
3
π2

8
= π2

6
. - Puisque f ∈ CM2π, on a, d’après la formule de

Parseval réelle :

a20
4

+
1

2

+∞∑
n=1

(
a2n + b2n

)
=

1

2π

∫ π

−π
(f(t))2 dt,

c’est-à-dire ici :
1

2

+∞∑
p=0

16

π2(2p+ 1)4
=

1

2π

∫ π

−π
(f(t))2 dt

=
1

π

∫ π

0

(f(t))2 dt =
1

π

(∫ π/2

0

t2 dt−
∫ π

π/2

(π − t)2 dt

)
u = π − t

= π

(∫ π/2

0

t2 dt+

∫ π/2

0

u2 du

)

=
2

π

∫ π/2

0

t2 dt =
2

π

[
t3

3

]π/2
0

=
π2

12

d’où :
∑+∞

p=0
1

(2p+1)4
= 2π2

16
π2

12
= π4

96
. - Comme en 1), en séparant les termes d’indices pairs, d’indices

impairs et puisque les séries qui interviennent convergent, on a :

+∞∑
n=1

1

n4
=

+∞∑
p=1

1

(2p)4
+

+∞∑
p=0

1

(2p+ 1)4

donc :

+∞∑
n=1

1

n4
=

1

1− 1
4

+∞∑
p=0

1

(2p+ 1)4
=

16

15

π4

96
=
π4

90

Réponse :
∑+∞

p=0
1

(2p+1)2
= π2

8
,
∑+∞

n=1
1
n2 = π2

6
,

+∞∑
p=0

1

(2p+ 1)4
=
π4

96
,

+∞∑
n=1

1

n4
=
π4

90
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Exercice 3

Soit f : R −→ R, t 7−→ | sin t|.
a) Vérifier f ∈ CMπ et calculer les coefficients de Fourier (trigonométriques) de f .
b) Étudier les convergences de la série de Fourier de f et préciser sa somme.
c) En déduire les sommes de séries suivantes :

∑+∞
n=1

1
4n2−1 ,

∑+∞
n=1

(−1)n
4n2−1 ,

∑+∞
n=1

1
(4n2−1)2 .

solution

L’application f : t 7−→ | sin t| est π-périodique et continue par morceaux (car continue), donc
f ∈ CMπ, et les coefficients de Fourier (trigonométriques) an, bn(n ∈ N) de f existent.
Comme f est paire, on a : ∀n ∈ N+, bn = 0.
On a, pour tout n ∈ N :

an =
2

π

∫ π

0

f(t) cos 2nt dt =
2

π

∫ π

0

sin t cos 2nt dt

=
1

π

∫ π

0

(sin(2n+ 1)t− sin(2n− 1)t)dt

=
1

π

[
−cos(2n+ 1)t

2n+ 1
+

cos(2n− 1)t

2n− 1

]π
0

=
1

π

(
1

2n+ 1
− 1

2n− 1

)
= − 4

π (4n2 − 1)

On conclut :
{
∀n ∈ N, an = − 4

π(4n2−1)
∀n ∈ N∗, bn = 0.

b) L’application f est π-périodique, de classe C1 par morceaux sur R, continue sur R, donc, d’après
le théorème de Dirichlet de convergence normale, la série de Fourier de f converge normalement,
donc uniformément, absolument, simplement, sur R et a pour somme f . D’où :

∀t ∈ R, | sin t| =a0
2

+
+∞∑
n=1

(an cos 2nt+ bn sin 2nt)

=
2

π
−

+∞∑
n=1

4

π (4n2 − 1)
cos 2nt

c ) - En remplaçant t par 0 dans le résultat de b ), on obtient :

0 =
2

π
−

+∞∑
n=1

4

π (4n2 − 1)

d’où :

+∞∑
n=1

1

4n2 − 1
=

1

2

- En remplaçant t par π
2

dans le résultat de b ), on obtient :
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1 =
2

π
−

+∞∑
n=1

4

π (4n2 − 1)
(−1)n

d’où :
∑+∞

n=1
(−1)n
4n2−1 = π

4

(
2
π
− 1
)

= 1
2
− π

4
.

- Puisque f ∈ CMπ, d’après la formule de Parseval réelle :

a20
4

=
1

2

+∞∑
n=1

(
a2n + b2n

)
=

1

π

∫ π

0

(f(t))2 dt

c’est-à-dire ici :

1

π2
+

1

2

+∞∑
n=1

16

π2 (4n2 − 1)2
=

1

π

∫ π

0

sin2 t dt

=
1

2π

∫ π

0

(1− cos 2nt)dt =
1

2π

[
t− sin 2t

2

]π
0

=
1

2

et on conclut :

+∞∑
n=1

1

(4n2 − 1)2
=
π2

8

(
1

2
− 1

π2

)
=
π2 − 2

16

Réponse :
∑+∞

n=1
1

4n2−1 = 1
2
,
∑+∞

n=1
(−1)n
4n2−1 = 1

2
− π

4
,

+∞∑
n=1

1

(4n2 − 1)2
=
π2 − 2

16

Exercice 4

Soit f : R −→ R, 2π-périodique, impaire, telle que : ∀t ∈ [0; π], f(t) = t(π − t).
a) Vérifier f ∈ CM2π et calculer les coefficients de Fourier (trigonométriques) de f .
b) Étudier les convergences de la série de Fourier de f et préciser sa somme.
c) En déduire les sommes de séries :

∑+∞
p=0

(−1)p
(2p+1)3

,
∑+∞

p=0
1

(2p+1)6
,
∑+∞

n=1
1
n6 .

solution

a) Il est clair que f est 2π-périodique (par définition) et continue par morceaux (et même continue)
sur R, donc les coefficients de Fourier (trigonométriques) an, bn(n ∈ N) de f existent
De plus, f est impaire, donc : ∀n ∈ N, an = 0.
On a, pour tout n ∈ N? :
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bn =
2

2π

∫
[2π]

f(t) sinnt dt =
1

π

∫ π

−π
f(t) sinnt dt

=
2

π

∫ π

0

t(π − t) sinnt dt

=
2

π

([
−t(π − t)cosnt

n

]π
0

−
∫ π

0

(−π + 2t)
cosnt

n
dt

)
= − 2

πn

∫ π

0

(2t− π) cosnt dt

= − 2

πn

([
(2t− π)

sinnt

n

]π
0

−
∫ π

0

2
sinnt

n
dt

)
=

4

πn2

∫ π

0

sinnt dt = − 4

πn2

[
cosnt

n

]π
0

=
4 (1− (−1)n)

πn3

On conclut :
{
∀n ∈ N, an = 0

∀n ∈ N∗, bn = 4(1−(−1)n)
πn3 .

b) Puisque f est 2π-périodique et de classe C1 par

morceaux et continue sur R (et même de classe C1 sur R ), d’après le théorème de convergence
normale de Dirichlet, la série de Fourier de f converge normalement, donc uniformément,
absolument, simplement, sur R et a pour somme f . On a donc :

∀t ∈ R, f(t) =
a0
2

+
+∞∑
n=1

(an cosnt+ bn sinnt)

=
+∞∑
n=1

4 (1− (−1)n)

πn3
sinnt

En particulier :

∀t ∈ [0;π], t(π − t) =
+∞∑
n=1

4 (1− (−1)n)

πn3
sinnt

c) 1) En remplaçant t par π
2

dans le résultat de b ), on obtient :

π2

4
=

+∞∑
n=1

4 (1− (−1)n)

πn3
sin
(
n
π

2

)
=

+∞∑
p=0

8

π(2p+ 1)3
sin
(

(2p+ 1)
π

2

)
=

+∞∑
p=0

8(−1)p

π(2p+ 1)3

car les termes d’indices pairs sont tous nuls, d’où :

+∞∑
p=0

(−1)p

(2p+ 1)3
=
π3

32

2) Puisque f est 2π-périodique et continue par morceaux sur R, on a, d’ après la formule de Parseval :
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a20
4

+
1

2

+∞∑
n=1

(
a2n + b2n

)
︸ ︷︷ ︸

noté PM

=
1

2π

∫
[2π]

(f(t))2 dt︸ ︷︷ ︸
noté SM

.

Ici :

PM =
1

2

+∞∑
n=1

16 (1− (−1)n)2

π2n6
=

32

π2

+∞∑
p=0

1

(2p+ 1)6

car les termes d’indices pairs sont tous nuls, et :

SM =
1

2π

∫ π

−π
(f(t))2 dt =

1

π

∫ π

0

(t(π − t))2 dt

=
1

π

∫ π

0

(
t4 − 2πt3 + t2π2

)
dt =

1

π

[
t5

5
− 2π

t4

4
+ π2 t

3

3

]π
0

=
1

π

(
π5

5
− 2π

π4

4
+ π2π

3

3

)
= π4

(
1

5
− 1

2
+

1

3

)
=
π4

30

On a donc : 32
π2

∑+∞
p=0

1
(2p+1)6

= π4

30
, d’où :

+∞∑
p=0

1

(2p+ 1)6
=

π6

960

3) On a, pour tout N ∈ N, en séparant les termes d’indices pairs, d’indices impairs :

2N+1∑
n=1

1

n6
=

N∑
p=1

1

(2p)6
+

N∑
p=0

1

(2p+ 1)6

=
1

26

N∑
p=1

1

p6
+

N∑
p=0

1

(2p+ 1)6

d’où, en faisant tendre l’entier N vers l’infini, et puisque les séries qui interviennent convergent :

+∞∑
n=1

1

n6
=

1

26

+∞∑
n=1

1

n6
+

+∞∑
p=0

1

(2p+ 1)6

et donc :
+∞∑
n=1

1

n6
=

1

1− 1
26

+∞∑
p=0

1

(2p+ 1)6
=

64

63

π6

960
=

π6

945

+∞∑
p=0

(−1)p

(2p+ 1)3
=
π3

32
,

+∞∑
p=0

1

(2p+ 1)6
=

π6

960
,
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+∞∑
n=1

1

n6
=

π6

945
.
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