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Chapitre 1

Séries numériques

Table des matieres

Exercice 1

Déterminer la nature de la série de terme général u,, dans les exemples suivants :

sinn n n2+42n sinn
a) B b) i — v —Tc) (3 +1)" d)In #2252 ) 1 — cos (S22 ) f)na? —1g) 2 h)
M’ (a7 b) e RQ

nb

Solution :

41a)0Ona: 0<bnnl ¢ #

n2

D’apres I’exemple de Riemann ( 2 > 1) et le théoreme de majoration pour des séries a termes > 0,
on conclut que la série ) | u, converge.
b) On a, en utilisant une expression conjuguée :

1 1 1
> = .
\/ﬁ—i—\/n—l/Z\/ﬁ Qn%

VA VA—I-

D’apres I’exemple de Riemann ( 1/2 < 1) et le théoréme de minoration pour des séries a termes > 0,
on conclut que la série ) u, diverge.

¢)Ona,pourn > 3:0< (%—i—%)n < (g)n.

. 5 P . P 5\ 7 PR . .
Pu1'sque 0 < g <1, la série géométrique Zn (6) converge. Par théoreme de majoration pour des
séries a termes > 0, on conclut que la série ) u,, converge.
d)Ona:

n®+2n+3
n———=In(1+
n2+2n+2 n2+2n+2
1 1
Nnoon2—|—2n+2 n2

5



6 CHAPITRE 1. SERIES NUMERIQUES

D’apres I’exemple de Riemann ( 2 > 1) et le théoreme d’équivalence pour des séries a termes > 0,
on conclut que la série ) | u, converge.

H 2
e) Comme *>* — Oetque 1 —cosz ~ “-,ona:
n noo x—0
. . 2
sinn 1 /sinn
1 — cos ~ =
n noo 2 n
Et:

D’apres I’exemple de Riemann (2 > 1), la série ), - converge. Par théoréme de majoration pour

des séries a termes > 0, la série ) | (%) converge. Par théoréme d’équivalence pour des séries a
termes > 0, on conclut que la série ) u,, converge.

fyOna:

nn? —1=en? —1 ~ —

Pour étudier la nature de la série ) | 12—? nous allons essayer d’utiliser la regle n%w,,.

Ona:

a6l Inn
R N |
n2 ni/2 nee

par prépondérance classique. D’otl, a partir d’un certain rang : n°/ 212—2" < 1,donc: 0 < 12—2” < #
) N ) . P 1 P N . .
D’apres I’exemple de Riemann (3/2 > 1), la série ) — converge. Par théoréme de majoration

pour des séries a termes > 0, la série Zn h;—? converge. On conclut, par théoreme d’équivalence pour
des séries a termes > 0, que la série Zn u, converge.

g Ona:VneNwu, >0et:

Un+1 21’L+1 n' 2
- v —L0<1

D’apres la regle de d’ Alembert, on conclut que la série ) u,, converge.

h)Ona:

b b—1

L = an”
n

-Sia # 0, alors : u,, ~ n%"
oo . 7 N 9z . Z..: N\

Il en résulte, d’apres I’exemple de Riemann et le théoréme d’équivalence pour des séries a termes

> 0, que la série Zn u, converge si et seulement sia —b — 1 < —1, c’est-a-dire a < .

- Sia =0, alors u,, = 0 pour tout n € N*, donc la série Zn u, converge.

Finalement, la série ) _ u, converge si et seulement si :



a<boua=0.

Exercice 2

Déterminer la nature de la série de terme général u,, dans les exemples suivants :
lnn Inn 1 1
a) nglnn ) C) d) flnn ) nlnn f) n(lnn)2"

Solution :

a)Ona,pourn > 3:0 < n21nn
D’apres I’ exemple de Riemann (
que la série ) —— lnn converge
b)Ona,pourn >3: 18 > 1>

D’apres I’exemple de Rlemann et le théoréme de minoration pour des séries a termes > 0, on conclut

que la série ), % diverge. ¢) Ona: n’/2u, = n3/22p = I — 0, par prépondérance

N
2 > 1) et le théoreme de majoration pour des séries > 0, on conclut

classique, d’ ol 2 partir d’ un certain rang : n3/2un < 1, etdonc: 0 < Uy < =73
D’apres I’exemple de Riemann ( 3/2 > 1) et le théoréme de majoration pour des séries a termes > 0,

on conclut que la série Z nn converge.

_ vn , ,
\/mnn I —>n ~+00, par prépondérance classique, d’ ou, a partir d’un certain

rang : nu, > 1, et donc : u, > = > 0.
D’apres I’exemple de Riemann et le théoréme de minoration pour des séries a termes > 0, on conclut

que la série ) \/ﬁlnn diverge.
e) Considérons I’application

d)Ona: nu,=n

1
zlnx

f: [2;+oo {—>R,xH

Il est clair que f est continue, décroissante, > 0. D apres le cours sur la comparaison série/intégrale,
la série ) | u, converge si et seulement si I’application f est intégrable sur [ 2; 400 [.
On a, pour tout X € [2; 400 :

X X 4 X q
/ f(:x)dx:/ dxyzln:z:/ —dy
2 o wlnw m2 Y

o InX _ -
=[lnylpy =InlnX —Inln2 L, oo
Ainsi, f n’est pas intégrable sur [ 2; 400 [ et on conclut que la série ) | —— diverge.

f) Considérons 1’application

1
g:|2;+o0 | — Rz +— ——
z(lnz)?
Il est clair que g est continue, décroissante, > 0.
D’apres le cours sur la comparaison série/intégrale, la série » | u,, converge si et seulement si
’application g est intégrable sur [2; +oo[. On a, pour tout X € [2; +o0] :
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X X 1 Inz 1
do=[ ——dv = —d
/2 g(m) v \/2 Q?(lﬂl’)2 . y=Ilnzx AQ y2 y

IR LS
|y 1n2_ InX In2az-+c In2

Ainsi, g est intégrable sur [2; +o00[, et on conclut que la série ) m converge.

Exercice 3

. a SN , Dé . (-
Soit ) -, a, une série a termes dans R , convergente. Déterminer la nature des séries de termes
généraux :

— _Qn
Un = 1+an’

chan,—1 42
#, Wy, = Gy

Un —

Solution :

an

On a, pourtoutn : 0 < u,, = T < ay.
n
Comme la série ) a, converge, par théoréme de majoration pour des séries a termes > 0, on
conclut que la série ) . u,, converge.
- Puisque la série ) a, converge, ona: a, — 0, donc :
noo

1
cha, —1  3a2 1

Uy = ~ = —a, = 0.
an noo  Qy, 2

Comme la série ) a, converge, par théoréeme d’équivalence pour des séries a termes > 0, on

conclut que la série ) v, converge.

- Puisque la série En a, converge, on a : a,, — 0, donc, a partir d’un certainrang : 0 < a,, < 1,
noo

d’ou :

2
0<w, =a, <a,

Comme la série ) . a, converge, par théoreme de majoration pour des séries a termes > 0, on
conclut que la série )  w, converge.

Exercice 5

A : Z_ .2 z 7z . _1 n _1 n
Déterminer la nature de la série de terme général w,, dans les exemples suivants : a) 753 +31 fl ,b) ( \/% ,

(1 (1
) wene O e

Solution :

45a)Ona:Vn e N, |u,| =

n n _ 1
n3+n+1 < n3 ~ n2°



D’apres I’exemple de Riemann ( 2 > 1) et le théoreme de majoration pour des séries a termes > 0, la
série ) |u,| converge. Ainsi, la série ) u,, converge absolument, donc converge.
b) La série > -, u, est alternée, u,, — 0 et la suite (|u,|),-, est décroissante, donc, d’apres le

TSCSA, la série ) -, u, converge.
c) Effectuons un développement asymptotique :

L <—1>")1

Gy AN
=S (e (R)) =S o)

D’apres le TSCSA, la série > | n) converge.

n=1
Par théoréme de comparaison, puisque la série ) — 1 converge et est a termes > 0, la série

>, 0 (n2) converge absolument, donc converge.
Par addition de deux séries convergentes, on conclut que la série ) . u,, converge.
d) Effectuons un développement asymptotique :

"o \/ﬁtl()jl)" = (?/%)n (1 + (_1)”)1

EE (- o)
e

G |
- _E+O n3/2

D’apres le TSCSA, la série Zn>1 Dn converge.

La série ), * diverge.

Par théoreme de comparaison, puisque la série Zn>1 —77 converge et est a termes > 0, la série
>, 0 ( 3 /2) est absolument convergente, donc convergente.

Par addition d’une série divergente et de deux séries convergentes, on conclut que la série > u,
diverge.

Exercice 6

1-Soit (u,),, une suite réelle. On suppose que les séries y . wu, et Y u? convergent.
a) Montrer que, a partir d’un certain rang, u,, # —1.

b) Etablir que la série Do T
2-Soit ) -, u, une série a termes dans R+, convergente.

Montrer que la série ), ., ¥=" converge.

Solution :

1- a) Puisque la série u,, converge, on a : u,, — 0, donc, a partir d’un certain rang : u,, # —1.
n
noo
b) D’apres a ), la série de terme général v, = 1
On a, pour tout n :
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Comme la série de terme général u? converge, d’apres le théoreme d’équivalence pour des séries a
termes > 0, la série de terme général |v,, — u,,| converge. Ainsi, la série de terme général v,, — u,, est
absolument convergente, donc convergente. Enfin, comme, pour tout n : v,, = (v, — u,) + u,, par
addition de deux séries convergentes, on conclut que la série de terme général v,, est convergente. 2-

1
N N 2 N 2
N eN L0 V< (Yo ) (X
n=1 n=1 n=1

Puisque les séries ) | u, ety . # sont convergentes et a termes > 0, on a, pour tout N € N* :

N +o0 N 1 +o0 1
)RITED UMD St i
n=1 n=1 n=1 n=1
D’ou:
1
N Vﬁr- +o00 2 +o00 1 2
k n
wen oY e () (S8
n=1 n=1 n=1

Y2 sont majorées.

Ceci montre que les sommes partielles de la série a termes > 0, ) -,

D’aprés un lemme du cours, on conclut que la série ), ¥ converge.

Exercice 7
On note, pour tout n € N* :

si n % 0[3]
si n=0[3

|

Montrer que la série ) . ., u, converge et calculer sa somme.

ST

solution

4.22 - Groupons les termes trois par trois.

On a, pour tout p € N* :
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n=1
n 1 n 1 2

3p—2 3p—1 3p
B S R o
_n: n k= 3k_n— n n:ln

n=p+1 =1
En notant ¢ = 2p, on a donc :
3p q
1 1
Sou -2t
n=1 i=1 1+ q

On reconnait une somme de Riemann, pour la fonction f : x — HL%, qui est continue sur le
segment [0; 1]. On a donc :

I~ 1 |
—Z T dx

=1

1 !
= {ﬁln(l%—Qx)k = 51113

. . 3 .
On a donc, par suite extraite : np: L U, — In 3. - Comme u,, — 0, on a alors aussi :
poo

noo

n=1

3p+2 3p

Z Uy, = g Up | + Uspy1 + Uspre — In 3.
poo

n=1

n=1

3p+1 3p

Z Uy = (Z Un> + U3p+1 — In3
1 pee

n=

Comme les 3p, 3p + 1, 3p + 2, p décrivant N*, recouvrent tous les entiers ( > 3 ), on déduit :

k=1

Exercice 8

On considere la suite réelle (u,),,., définie par u; = 1 et:

1
Vo2 1 Upyy =\ u2 + —
n

a) Déterminer la limite de u,, et un équivalent simple de u,, lorsque 1’entier n tend vers I’infini.
b) Déterminer la nature des séries de termes généraux ui et EU°

Un
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solution

a) - Une récurrence 1mmed1ate montre que pour tout n > 1, u,, existe et u,, > 1.
-Ona, pourtoutn > 2 : u2 = ui_; + —,
d’ou, en réitérant et en additionnant :

d’ou, puisque u, > 0: u, = +/1+ H,_1.
Comme H,, — +00, on déduit : u,, —> +0o0.

©
De plus, on sait :

1
H, 1 ~Inn—1)=Inn+In (1— —) ~ Inn,

noo n

donc: u, ~ VInn

b) 1)Onazazm > 0.
Comme nﬁ — +00, a partir d’un certain rang : nﬁ > 1, donc : \/%7 > 1. D’apres I'exemple

de Rlemann et le theoreme de minoration pour des séries a termes > 0, on déduit que la série
2 diveree. s .

D’apres le théoreme d’équivalence pour des séries a termes > 0, on conclut que la série de terme
général — L diverge

Un

2) La série Zn>l CL” est alternée, son terme général tend vers 0 (car u, — +00 ) et la suite
noo

(i) est décroissante, car :
n>1

Un

1
Vn =1, upy = U%Jrﬁ)un.

D’apres le TSCSA, on conclut que la série de terme général % converge.

Exercice 9

1

Existence et calcul de Z _1 Up OU Uy, = PYCTES)E

solution

4.47 1) Existence :

N B
Ona: Up = nent) 2n2
d’équivalence pour des séries a termes > 0, on conclut que la série ), -, u, converge.

2) Calcul :
Essayons de faire apparaitre un télescopage dans 1’expression des sommes partielles, en utilisant une

décomposition en éléments simples d’une fraction rationnelle.

> 0. D’apres I’exemple de Riemann ( 2 > 1) et le théoreme



On a facilement la décomposition en éléments simples :

D’ou, pour tout N > 1:

240(1) 2 In=+2=2—2In2.
v T2tol) 2 Ino+ n

On conclut que la série Zn>1 u,, converge (ce qui était déja acquis d’apres 1)), et que :

T, =2 —21n2.

n=1

13
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Chapitre 2

Suite et Série des fonctions

Exercice 1

Etudier (convergence simple, convergence uniforme, convergence uniforme sur des parties de
I’ensemble de départ) les suites d’applications suivantes :

a) fu: R — R,z +— £, neN*

b) fn : [0; 1]—)R5Er—>1+m,n€N*

) fon R—Rzr— 575 neN

d) fn: [01]—>]Rxl—>x(1—x)n€N*

e) fn:[0;4+00[— R,z +— 2~ n €N,

1+n2x’

Solution :

a) 1) Convergence simple :

) C.s.
On a, pour tout = € R fixé : f,(7) = nZIiQ — 0, donc : f, == 0.
noo noo

2) Convergence uniforme :
Ona:Vn e N Vo eR,|f,(2)] = 55 < 25, donc :

n2 +$2 ~

n—l—l
| folloo

On conclut : f, SN 0, et donc f, N 0, ce qui rend 1’étude de 1) inutile, a condition de prévoir que
noo noo
la limite sera 0 . b) 1) Convergence simple :

2

Soit z € [0;1]. Sia #£ 0, alors : f,,(z) = 2= ~ 22 — 3 donc : f,(z) —> 2. Siz = 0, alors :

1+nx noo N¥

fn(z) =0 — 0. On conclut : f, SN fyou: f:[0;1] — R,z — . 2) Convergence uniforme :

Ona:Vn e N* Vx € [0;1],

nx? x 1
— <
14+ nx

o) = Fla)| = \
donc :

15



16 CHAPITRE 2. SUITE ET SERIE DES FONCTIONS

1= flloo < -2 0

On conclut : f, AN f, ce qui semble rendre I’étude de 1) inutile. Cependant, pour former
noo
| fn — fl|, il faut d’abord connaitre f, ce qui nécessite 1’étude de la convergence simple. c) 1)
Convergence simple :
On a, pour tout z € R fixé : f,(z) = 71z — 0,donc: f, ©540.2) Convergence uniforme :
noo noo

1" méthode :
Soit n € N*. L’application f,, est impaire, de classe C* sur R, et, pour tout z € [0; +o0o] :

() = x? + n? —x(22x) _ n? —56'22’
(22 4 n?) (22 4 n?)

Onadonc: ||f,]|, = fu(n) = 5% = 5= — 0, eton conclut : f, £84 0, donc f, <25 0, ce qui
noo noo noo

rend I’étude de 1 ) inutile.
2° méthode :
Soit n € N*. Rappelons : V(a,b) € (Ry)*,a? + b* > 2ab. On a donc :

n o x 1
Vo € RT,0 < fo(x) = g < 5 = 3

d’ou, puisque f,,(0) = 0 et que f,, est impaire :

1

Il < 5o

et on termine comme dans la 1" méthode. d) 1) Convergence simple :
Soit z € [0; 1] fixé. Si z # 1, alors : f,,(x) = 2"(1 — ) — 0.
Siz = 1,alors: f,(z) =0 — 0.

On conclut : f, —> 0.

2) Convergence unlforme
Soit n € N*. L’application f, est de classe C' sur [0; 1] et, pour tout z € [0;1] :

filx)=nz" ' —(n+ 12" =2""n—(n+1)2)

n
Il =50 (1)
B n \" 1 < 1 .0
S \n+1 n+1  n+1 n

et on conclut : f, LN 0, ce qui rend I’étude de 1 ) inutile. e) 1) Convergence simple :

Soit x € [0; +o0] fixé.
Siz #£0,alors : f(z) = 24— ~ 2 (.

2
14+n*x noo ™ moo

Siz =0,alors: f,(z) =0 — 0.

On adonc :

c.s .
On conclut : f,, — 0. 2) Convergence uniforme :
nooo



- On remarque que, pour tout n € N, f,, — 0 n’est pas bornée sur [0; +o0 [, car f,(x) P +00,
T—>r+00

donc : f, <X 0 sur [0; +oo0].
- Soit b € [0; 4-o0] fixé.

Ona:
na? z? b?

n € ,x€[7]7|f(x>| 1+n2x n n

donc :
" b2
Ifall ! < = —0
n noo

On conclut :
frn =% 0 sur tout [a; b], b € [0; +oo] fixé.

Exercice 2

Déterminer les limites suivantes, lorsque I’entier n tend vers 1’infini :
. —+o0 *%
a) lim,, fo f+7 dz

b) limyoo [, 2 do

o) limyee [ soimy de.

Solution :

Nous allons essayer, dans ces exemples, d’appliquer le théoreme de convergence dominée.
a) Notons, pour tout n € N* :

e
1+ 22

fn: {0;—1—00 lHR,xl—>

- Pour tout n € N, f,, est continue par morceaux (car continue) sur [0; +00].
- Pour tout = € [0; +o0] fixé :

B e v R 1
1422 neo 1+ a2

fu(2)

_1_
1422 °

- f est continue par morceaux (car continue) sur [0; +00|.
-Ona:

En notant f : [0; +00 [— R,z +— on a donc : f, % f.

Vn € N*,Vz € {0; 400 { | fu(z)] =

17
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et ’application z — ﬁ est continue par morceaux (car continue), > 0, intégrable sur [0; +-00| car

—L.  ~ 1 exemple de Riemann en +o00(2 > 1) et théoréme d’équivalence pour des fonctions
1tz T—+00 r
= 0.

Ainsi, (f,),cn+ Vérifie 'hypothese de domination.

D’apres le théoreme de convergence dominée, f est intégrable sur [0; +00] et :

+o0 +oo +o0 1
0 neo o o 1+a?

= [Arctan z]{> = g

et qp =1
=7

On conclut : lim, [, < T

b) Notons, pour tout n € N :

n
- Pour tout n € N, f,, est continue par morceaux (car continue) sur [1; +o00].
- On a, pour tout = € [1; +oo] fixé :

Fulz) = n _ 1 1

y
nr?4e* 22+ < noo 22

- C.S. N

Ainsi: f, — f,ol: f : [1;+00 [— R,z — 5.

- f est continue par morceaux (car continue) sur [1; +00].
-Ona:

1
Vn e N,Vx € {1;—1—00 {,|fn(a:)| - <=

X
nr2+er

etr — %2 est continue par morceaux (car continue), > 0, intégrable sur [1; 00| (exemple de
Riemann en +00,2 > 1). Ceci montre que (f,), oy Vérifie I’hypothése de domination. D’apres le
théoréeme de convergence dominée, on déduit :

+o00 +o00 +o00 1 1 +o0
1 neo Jq 1 Zz T4

. “+00
On conclut :  lim, [ e dr =1

¢) Notons, pour tout n € N* :

xn

ni|0;+00 | — R 2 +— —————
/ { [ x4+ an 41

- Pour tout n € N, f,, est continue par morceaux (car continue) sur [0; +00].
- Soit z € [0; +o0].

Sio<x<lalors: f,(z) = sy

)
Siz=1,alors: f,(z) =3 — 3.

N )

noo

Siz > 1, alors:
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(z) = Loy
f (l’) x2n+xn+1 noo x2n x noo
Ainsi: f, =2 f sur [0; 4+00[, ol :
. 0 si xz#1
[ [0,+oo {—>R,x»—>{ 13 s w1
- f est continue par morceaux sur [0; +00].
- Soientn € Ntz € [0; +o0]
Si0<x<1,alors:
< = il <2 <
PSP = e s s
Siz > 1, alors:
" 1 1
ngn(x)é%:—<—s1n>2
o™ x

Ainsi : Vn € NT — {1}, Vz € [0;+00 [, | fu(z)| < ¢(z), 0ol :

1 si 0<z<1
2 10; R . DI
® {07+oo{—> 75‘3'_>{$i2 G 1<z
L application ¢ est continue par morceaux, > 0, intégrable sur [0; +o0o[ (exemple de Riemann en
+00,2 > 1). Ceci montre que (f,),,, vérifie I'hypothése de domination.
D’apres le théoreme de convergence dominée, on déduit :

+o0 +oo

0 neo - Jo

"

2" zn41

On conclut : lim,, o f0+°° dz = 0.

Exercice 3

Soit f : [0; 1] — C continue par morceaux. Montrer :

1

/01 f(x) <1 — %)n de — | f(z)e™® dx.

noo 0

Solution :

Essayons d’appliquer le théoreme de convergence dominée.
Notons, pour tout n € N* :

fo:[0;1] — Cz — fo(z) = f(2) <1 B _)n
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- Pour tout n € N, f,, est continue par morceaux, comme produit de deux applications continues par
morceaux.
- Pour tout z € [0; 1], et pourn > 2 :

fn(z) = f(x)exp (n In (1 — f))

n

— f(2) exp (n H % (%H)

= f(x)exp(—z +o(1)) — f(x)e™"

Ennotant g : [0;1] — C,z +—— f(z)e *, onadonc: f, <, g sur [0; 1].
noo
- L’application g est continue par morceaux, comme produit de deux applications continues par

MOTCEaux.
- On a, pour tout n € N? et tout z € [0; 1] :

X n
@) = 1@ (1-2) < If@)
et | f| est continue par morceaux, > 0, intégrable sur [0; 1] car continue par morceaux sur ce segment.
Du théoreme de convergence dominée, on déduit :

/01an Olf

c’est-a-dire :

Exercice 4

Etudier (convergences simple, absolue, normale, uniforme) les séries d’applications Zn fn suivantes :
a) f ' R — R,z +— 20 ¢ N+

b) fn:[0;1] — R,z — n*2"(1 —2z)",n € N

) fu: [0;+00]— R,z — Fi7,n €N

d) fo : [0; +oo[— R,z — Ze %" n € N*

e) fn: [0; +oo[— R,z — 2% n € N

1’2+TL27
£) fo 1 [0;+00[— R,z — 5 n e N*
g) fn:[0;+oo[— Rz —> E;i):,n € N*..

Coerrection :

a) On a, pour toutn € N* et tout x € R :

| sinna| 1 1

[fn(2)] = < < =

n24+22 " n2+a22 " n
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d’ou:

1
Vn € NT, [ follo < —
n

D’apres ’exemple de Riemann (2 > 1), la série 2@1 # converge. Il en résulte, d’apres le théoreme
de majoration pour des séries a termes > 0, que la série ), || f,|[, converge.

On conclut que 2@1 fn converge normalement sur R, donc uniformément, absolument, simplement.
b) L’étude des variations de z — (1 — z) sur [0; 1] montre : Vz € [0;1], |#(1 — )] < 1. Ona
donc : Vn € N,Vz € [0;1], | fu(2)| < Z—z, d’ou :

2

neN |full. < 5

Notons, pour toutn € N : u,, = Z—j. Ona:

Vn € N* u, >0

et: Ui — (Z,ﬁfi—z = (”:QI)Qi — 1 < L. D’apres la regle de d’ Alembert, la série ), u,
converge.

D’apres le théoréme de majoration pour des séries a termes > 0, la série ) -, || fu||, converge.
Ceci montre que la série 2@0 fn converge normalement sur [0; 1], donc uniformément, absolument,
simplement.

c) 1) Convergence simple, convergence absolue :

La convergence absolue revient a la convergence simple, puisque les f,, sont toutes > 0. Soit

x € [0;+00[.Ona:

TL{L'2 TL:L‘2 [I)2

Vn € N*, fu(z) = <= ==

- N
n3 + 12 n3 n

D’apres I’exemple de Riemann (2 > 1) et le théoréeme de majoration pour des séries a termes > 0, la
série ) -, fn(7) converge.

Ceci montre que -, f, converge simplement et absolument sur [0; +oc0l.
2) Convergence normale, convergence uniforme :

-Ona: | fulle > fuln)| = e = 37 — 1. donc:

1

D’apres le cours, il en résulte que ) -, f, ne converge pas uniformément sur [0; +oo[, donc ne
converge pas normalement sur [0; 4+00].
- Soit a € [0; 4-o0] fixé.

Ona:

na? na®  a?

Vn € N*, Ve € [0;al, [fu(2)] = S5 =

= < —_
n3 + T2 n3 n2’

donc :
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2
0; a
Ve N I8 < .

I1 en résulte, d’apres I’exemple de Riemann ( 2 > 1) et le théoreme de majoration pour des séries a
termes > 0, que la série ), -, || an([ga] converge.

Ceci montre que ) -, f, converge normalement, donc uniformément, sur tout [0; a], a € [0; +00]
fixé. d) 1) Convergence simple, convergence absolue :

La convergence absolue revient a la convergence simple, puisque les f,, sont toutes > 0.

Soit z € [0; +o0.

Six > 0, alors, pour tout n € N* :

n
Puisque ’e‘ﬂCQ’ < 1, la série géométrique ) _, -, <e_1’2> converge, donc, par théoréme de majoration
pour des séries a termes > 0, la série ) _ -, f,(x) converge.
Siz = 0,alors: Vn € N*, f,(r) = 0, donc la série ) _ -, fn(x) converge.
Ceci montre que ) -, f, converge simplement et absolument sur [0; +o0|.
2) Convergence normale, convergence uniforme :
Soit n € N*. L’application f,, est de classe C'* sur [0; +o00] et, pour tout

T € [O; +00 [: fi(z) = 1 (1 - 2n%2?)e** , On a donc :

N[

1 1 1
\V/ N+ n = Jn - B
neN" | fullo =7 (n\/i> n2\/§e n2y/2e

D’apres I’exemple de Riemann (2 > 1), la série ) - || ful|, converge.

Ceci montre que 2@1 fn converge normalement, donc uniformément, sur [ 0; +o00[, et rend I’étude
de 1) inutile.

e) 1) Convergence simple, convergence absolue :

La convergence absolue revient a la convergence simple, puisque les f,, sont toutes > 0. Soit

x € [0; +00] fixé.

Ona:

1
fn<x)_n—+x,\, >0

n3 + 12 noo N2

D’apres I’exemple de Riemann (2 > 1) et le théoreme d’équivalence pour des séries a termes > 0, la
série ), -, fu(7) converge. Ceci montre que ), ., f, converge absolument et simplement sur

[0; +o0].

2) Convergence normale, convergence uniforme :

Soit n € N*. L’application f,, est de classe C* sur [0; +o0] et, pour tout = € [0; 00| :

(n*+2%) — (n+x)2x  2°+2nx —n?

fn(I) = (n3+x2)2 = (n3+x2)2

Par résolution d’une équation du second degré, on déduit le tableau de variations de f,,, en notant
T, = —n++vn3+n2:0nadonc:
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B vn? + n? B 1
2n3 4+ 2n2 — 2nv/nd +n?2 2 (\/ n3 +n? — n)

1 1

3/2 1_ 1 N2”3/2
on3/ (w/l"‘n \/ﬁ>

D’apres I’exemple de Riemann ( 3/2 > 1) et le théoréme d’équivalence pour des séries a termes > 0,
lasérie ), -, || full, converge. Ceci montre que ) -, f, converge normalement sur [0; +ool, donc
uniformément, absolument, simplement, et rend inutile I’étude de 1 ). f) On a:

1 1
Vn € N*,Vx € |:O;+OO [, |fu(z)] = —— < =,

\
224+ n2 T n?
donc :

1
V’I'L € N+7 ”anoo < ﬁ

D’apres I’exemple de Riemann ( 2 > 1) et le théoreme de majoration pour des séries a termes > 0, la
série D - || full, converge.

Ceci montre que -, f, converge normalement sur [0; +-oc[, donc uniformément, absolument,
simplement. g) 1) Convergence simple :

Soit - € [0; +oo] fixé. La série >, Ec_zfr)?: est alternée, (x_gfr):: =)o

décroissante. D’apres le TSCSA, la série ) -, fn(z) converge. Ceci montre que ), ., f, converge
simplement sur [0; +oc[. 2) Convergence absolue, convergence normale :

Soit z € [0; +oo] fixé. Ona: |f,(z)| = xgﬁrn ~ L > 0. D’apres I’exemple de Riemann et le
théoréme d’équivalence pour des séries a termes > 0, la série ) -, | f. ()| diverge. Ceci montre que
> n>1 fn nE converge absolument sur aucune partie non vide de [0; +-ocl. Il en résulte que ) _ ., f, ne
converge normalement sur aucune partie non vide de [0; +o00]. 3) Convergence uniforme :

Soit n € N* fixé. Puisque, pour tout z € [0; +00[, la série Z@l fu(z) releve du TSCSA, en notant

R, (x) le reste d’” ordre n, on a, pour tout z € [0; +00] :

est

) — 0, et la suite (
noo

1 1
<

donc :

1
n+1

” n||oo ~

Il en résulte : || R, || ., — 0, et on conclut, d’apres le cours, que > -, f,, converge uniformément sur
noo =
[0; +o0].

Exercice 5

—nx

ntx °

On note, pour toutn € N* : f,, : [O; +00 [—> R,z — (—1)"¢
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a) Etudier les convergences de la série d’applications > st fn-
b) Montrer que la somme S = > f, est continue sur [0; +-00].

Solution :

a) 1) Convergence simple :
Soit z € [0; +oo| fixé. La série ) _, ., fn(v) est alternée,

fulz)| = &2 — 0, et la suite

n+xr

(| fu(2)]),5, est décroissante. D’apres le TSCSA, il en résulte que la série ), f,(x) converge. On
conclut: ) ., f, converge simplement sur [0; +o0|.

2) Convergence absolue :

Soit x € [0; +o0] fixé.

-Casz #0.0Ona:

e—TLCE

Vn € N, ’fn(l’)’ = ntz <e ™ = (efg;)n.

Comme [e™*| < 1, la série géométrique ) ., (e*)" converge. Par théoreme de majoration pour des
séries a termes > 0, la série ) _, -, | fn(7)| converge.

-Casz =0.0na:Vn e N |[f,(x)| =1, donclasérie ), ., |fa(2)| diverge.

On conclut: ) ., f, converge absolument sur |0; +oc[, mais non sur [0; +-oc.

3) Convergence normale :
- Etude sur 10; 4-00] :
Soit n € N*. Comme |f,(z)| =

—nx
e

1 . 1 ) 5\ )
wre g, weonal | fnlloo = - et donc, d’apres I’exemple de

Riemann et le théoréme de minoration pour des séries a termes > 0, la série ) _ ., || fn |29+ diverge.
Ceci montre que -, f, ne converge pas normalement sur |0; +o0/.

- Etude sur [a; +oc[, a €]0; +o0[ fixé :

Soit a €]0; 00| fixé. On a : Vn € N*,Vz € [a; +o0],

e

)] = = <&

d’ou :

Wn € NT || fu 0 < (7).

Puisque [e~| < 1, la série géométrique ), (e~*)" converge.

Par théoreme de majoration pour des séries a termes > 0, on conclut que ), -, f, converge
normalement sur [a; +oo[, pour tout a €]0; 00| fixé. B

4) Convergence uniforme :

Puisque, pour tout z € [0; +oco [, lasérie ), fn(7) releve du TSCSA, on a, en notant R,, le reste
d’ordre n : Vn € N*,Vz € [0; +o00],

e—(n—f—l)az 1

< ;
n+1)+z " n+1l

| R ()] < [foga(2)] =

d’ou :
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1
Vn e N ||R, ||, < —,
n+1

puis :
|Rull,c —> 0.

Ceci montre que ), f, converge uniformément sur [0; +oo].
b) Puisque, pour tout n € N*, f,, est continue sur [0; +-oc[ et que ) -, f, converge uniformément
sur [0; +o00l, d’apres un théoreme du cours, on conclut que la somme S est continue sur [0; +00.

Exercice 7

On note, pour tout n € Nt : f, : [0; 400 [—> R,z — ln(Z—jx) .

a) Etudier la convergence simple de la série d’applications > nst S

On note S la somme.

b) Montrer que S est de classe C? sur [0; +0c | et exprimer, pour tout € [0; +00 [, S"(z) et S”(x)
sous forme de sommes de séries.

¢) En déduire que S est strictement croissante sur [0; +oo[ et que S est concave sur [0; +oo].

Solution :
a) Soit 2 € [0; 400 fixé. On a:

In(n+z) hn+n(1+%) Inn
n2 n2 noo 2

fn(x) =

Puisque la série > -, 12—27"” converge , par théoreme d’équivalence pour des séries a termes > 0, la

série ), -, fu(7) converge.
Onconclut: ) ., f, converge simplement sur [0; +-ocol.
b) @ Pour tout n € N*_ f,, est de classe C? sur [0; +00] et, pour tout = € [0; +oo] :

/ _ 1 M) — — 1
fa(x) = (n + x)n?’ f(@) (n + z)?n?

-Puisque :  Vn € N, ||f/|| = -, d’aprés I'exemple de Riemann (4 > 1), la série >, ., /7
converge normalement, donc uniformément, sur [0; +o0|.

- Puisque :  Vn € NT, || f, . = =5, d’apres I'exemple de Riemann (3 > 1), la série Y, ., f,
converge normalement, donc uniformément, sur [0; +oo[. - On a vuen a ) que 2@1 fn converge
simplement sur [0; 4+00].

D’apres le théoréme de dérivation pour les séries d’applications, on conclut que S est de classe C?
sur [0; +-00] et que, pour tout z € [0; +o0] :

—+00 “+00

/ 1 " 1

n=1
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¢) 1) D’ apres b), S est de classe C' sur [ 0; +oo[ et, pour tout z € [0; +00 [, S’(x) est la somme d’une
série a termes tous > 0, donc S’(z) > 0. On conclut que S est strictement croissante sur [0; +o0.

2) D’apres b ), S est de classe C? sur [0; +o0l, et, pour tout z € [0; +00 [, S”(x) est la somme d’une
série a termes tous < 0, donc S”(x) < 0. On conclut que S est concave sur [0; +o00].

Exercice 8

Soit fy : R — R, bornée, > 0. Etudier la convergence simple et la convergence uniforme de la suite
d’applications (f, : R — R), _; définie par :

Vn € NVe € R, foi1(x) = 1+ fu(x)

Solution :

Une récurrence immédiate montre que, pour tout n € N et tout x € R, f,,(x) existe et f,,(z) > 0.
Considérons I’ application

@ :[0; 40— Rt — V1+1t

et cherchons les éventuels points fixes de .
On a, pour tout ¢ € [0; 4+o00[, p(t) = Oet:

pt) =t<e=1+t=t"<=t*-t—-1=0

1+
2

S

—t=

, noté a.

Essayons de montrer que la suite ( f,,),, .y converge uniformément sur R vers la fonction constante c.
Soient n € N, x € R. On a, par utilisation d’une expression conjuguée :

| fos1(z) —al = ‘\/1 T i@ —Vita
_ ’fN(x) _a|
\/1 + fn(x) + \/1 + «

Une récurrence immédiate montre :

< 3 lfule) —al.

1
Ve e R,Vn € N, |fu(x) — o < 2—n|f0(x)—a|,

d’ou:Vr € R,Vn € N,

Ful) — al < o (o) + ) < g (1ol + )

11 en résulte que, pour tout n € N, f,, est bornée et que :



1
= allas < oz (Ifollog +0) =0

cU N . c N
On conclut : f,, — « sur R, ot « est la fonction constante égale a a.
noo

27
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Chapitre

Séries entieres

Exercice 1

Déterminer le rayon de convergence R des séries entieres suivantes :

2 es sl

= <i %Zn>b) Dnzo(Vi+ 2= V)2 Q) 3 g gt ia
In(n“+1 .

d) Zn;1 In(n3+1) N e) ano (2:> P f) Zn>0 esinn ,n.

Solution :

Notons, dans chaque exemple, a,, le coefficient de la série entiere envisagée.
a)Ona:

n?+1 1
ap = ~—
o342
puis, pour tout z € C? :

+1

Ry n

- 2| — |2],

Ay 2™ noo 1 + 1 noo

donc, d’apres la regle de d’Alembert : R = 1.
b)Ona:a,=vn+2—/n= \/T+++\/ﬁ ~ \/iﬁ,puis,pourtoutz €C?:

i o L S
apnz" noo v/m 4+ 1 noo ’

donc, d’apres la regle de d’Alembert : R = 1.
c)Ona:

puis, pour tout z € C? :

29
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g1 Zn-i—l

Ap 2"

~ — |zl =
noo 3n+1 2n

donc, d’apres la regle de d’ Alembert : R = %
d)Ona:

In(n?+1) B 21nn+ln(1+i)

n2

In(n3+1) 3lnn+In (1+ 25) neo

Ay =

8

puis, pour tout z € C* :

anz"

donc, d’apres la regle de d’Alembert : R = 1.
e) On a, pour tout z € C? :

Ay 2" 2n + 2\ (2n _1| |
e z
anz" n+1 n
(2n + 2)! (n!)2| | (2n+2)(2n+1)| | 4)2)
= zZl = V4 7 z
(n+1)!)? (2n)! (n+ 1) moo 10
donc, d’apres la regle de d’Alembert: R = }1.

f)Ona: VneN,0<Le !t e Lol
Les séries entieres ) - e 2" et > nso ©2" sont de rayon 1 (séries géométriques, ou regle de
d’ Alembert), donc, par théoreme d’encadrement pour les rayons : R = 1.

Exercice 2

Calculer le rayon de convergence et la somme des séries entieres suivantes ( z : variable complexe, x :
variable réelle) :

2
) Xz T B) 3o WFTUW ) D nzo nS:—fl_lx”
d) 220 (n* + 1) (=1)"z*" e) -, ntlzn f) D ns1 n(=D"pn

Solution :

a) La regle de d’ Alembert montre : R = 1.
Ona:

d’ou, en dérivant :



R 1
Vo el -1 1[,;7@"_1 = (e
puis, en multipliant par x :
= . ,
Vo €] — 1;1[,;711' = a—ae =z(1l—x)
puis, en dérivant : Vo €] — 1;1],
1+
ZnQ l=(1-2)?+22(1—2)7" = a2y

puis, en multipliant par x et en remarquant que le terme d’indice O est nul :

+o0

Ve €] - 11] S(@—Z”%“%
Réponse : R = 1et:
Vxe]—1§1[7 5(5’5):%

b) L'utilisation d’un équivalent et la regle de d’ Alembert montrent : R = 1. On a, pour tout

rel—1;1]:
400 “+o00
n+1
e N (AT
n=1 n=1
+o00 +o0 +ool’n
— n 9 n -

+00 1
Vo €| —1;1], "=
€] =11 ;x —
donc : Vo €] — 1;1[, 32 2" = -1~ — 1 = +Z. D’autre part, en dérivant, on obtient :
+00 1
n—1 __
Va E]—l,l[,;nx BREEE
puis, en multipliant par z :
—+00 T
Vo e]—1 1[,21235 = e

31
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Enfin, on sait : Vo €] — 1;1[, > 7% - = — In(1 — z). En combinant linéairement, on en déduit S(z).
Réponse : R = 1let:

3x — 222

Ve €] —1;1], S(z)= a=ar

—In(1 — z).

c¢) L'utilisation d’un équivalent et la regle de d’ Alembert montrent : R = 1.
On a, pour tout z €] — 1; 1] :

400 2 +oo
n®+n*—1 1
S — n __ 2 n
e M Care)
+o00 1
S 5L
%,_/
notée A(x) notée B(x)

car ces deux séries entieres sont de rayon 1 .

Onacalculé A(x)dansa): A(z) = ?(H")”) D’autre part, si z # 0 :

1 <X 2

B(m):;zn+1:—2—:——ln 1 —x),

eton a B(0) = 1, terme constant de la série entiere définissant B(x).
Réponse : R = 1 et pour tout z €] — 1; 1] :

S(z) = g +iln(l—2) si x#0
1 si =0

d) e Soit x € R*. Notons, pour tout n € N :

u, = |(n* +1) (=1)"2™"| = (n* + 1) 2°

Ona: = (”IQIH |z — |z|?, donc, d” apres la régle de d” Alembert : R = 1. * On a, pour tout
x €] — 1, 1[ :

S(z) = Z (n?+1) (~1)ra™ = Z (n?+1) (—2?)"

DIIELES e

car ces deux séries enticres sont de rayon 1 . D’une part, par série géométrique :

& 1 1
—2n: g
;( x) 1 —(—x?) 14 2

D’autre part, d” apres I’exercice a ) :



“+o0o
Viel - L], ittt =

n=0

puis en remplagant ¢ par —x? €] — 1; 1] :

+oo 2 2
n  —x (1 -
E:nQ(_xQ) _ 7 ( 232)
Réponse: R = 1let:

—2? (1 —2?%) N 1
(1+22)?°  1+a?

Vo €] —1;1 { S(z) =

e) - Ona, pour tout z € C:

~_n+2 nl
S (n+DIn+1

an+lzn+1

||

anz"
n -+ 2 1
= a4l ~ =z —0,
(n—%l) noo M noo
donc, d’ apres la regle de d’ Alembert : R = +oo.
- On a, pour tout z € C:

n+1 , n+1 ,
s)=3 Loy AL
n=0 n=1
“+o00
1 1y
—1+Z(<n_1)' —|—n|>z
n=1
400 n oo 4

car ces deux séries entieres sont de rayon infini

n too n

—Z . —l—znr: (1+2) Z;!:(l—i-z)ez.

n=0 n=0

Réponse : R = +ooet:Vz € C,5(2) = (1 + 2)e*
fOna:Vn € N*, L < a,| < n.

33

Comme les deux séries entieres ), +z" et ), _, 2" sont de rayon 1, par théoréme d’encadrement :

R = 1. - Soit z €] — 1; 1[. Pour séparer les termes d’indices pairs, d’indices impairs, nous allons

travailler sur des sommes partielles.
On a, pour tout N € N :

2N+1

N N 1
(=" 2p ot op
nz:;n T —pz:;pr +;2p+1x
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Comme les trois séries entieres qui interviennent sont de rayon 1, on déduit, en faisant tendre 1’entier
N vers I’infini :

“+o00 ) “+00 $2P+1
S(w):Zprp+ZQ T
=1 =0 p +
p p
—_——
notée A(x) notée B(x)

On a, d’apres la série géométrique :

400
1
n=0

d’ou, en dérivant :

puis, en multipliant par ¢ :

“+o0o
" t
Vtel —1;1 [,Znt =T
n=1

Il s’ensuit :
+o0 » .TQ
D’autre part :
+00  op+1 1 1
Vel -1, Ba) =Y o = -l

Sep+l 2 l-u

Réponse: R = 1let:

212 1 1+=x«

Vo €] = L1, S(2) -7 21—z

I
+
|

Exercice 3

Pour les fonctions f des exemples suivants, ot ’on donne f(x)(x : variable réelle), montrer que f est
dSE(0) et calculer son DSE(0) ; préciser le rayon de convergence R. a) i;f? b) s
¢) (1 —2z)In(1 —z)d) In(2? — 8z + 15)
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solution

a) La fonction f : x —— 2 ” est définie sur R — {—1, 1}, donc au moins sur | — 1; 1|, et on a, par
une décomposition en elements simples immédiate, pour tout z €| — 1; 1] :

3
x gx_l—i-oo 2 x+1 1 oo 11—z 2 14z
=T —3 Yoo — 5 aoo(—1)a”
=/ 3 1 Ry
o Y T 1\n n _ n
=x+ 5 2( 1) ) x Z Apx
n=0 n=0
—2 L1 sin#1
en notant : a,, = 2 2 i
" { 0 sin=1

-1 sin=2p+1,peN*
ouencore:a, =< —2 sin=2ppeN
0 sin=1.

Déterminons le rayon R de cette série entiere. D’une part, puisque la suite (a,,), ne converge pas vers
O,ona: R <1

D’autre part, puisque (a,,),, est bornée,ona: R > 1

On conclut : R = 1.

b) La fonction
1 1

2 =322 +2 (22— 1) (22 - 2)

fixr—

est définie sur R — {—\/5, —-1,1, \/5}, donc (au moins) sur ]- 1; 1 [ et on a, par une décomposition en
éléments simples immédiate, pour tout x €] — 1; 1] :

1
f(l")_(x?—m(ﬁ_z)
1 1 1 1 1
— — _|_ — _ 3
?—-1 22—2 1-—22 21-%

+00 . 1+oo 2 n +00 1 .
2 (7) :Z<1_2n+l)w2

Puisque 1 — W o~ 1 et que la série entiere > >0 2" est de rayon 1, par théoréme d’équivalence,
o0

ona: R=1.
c¢) La fonction f : x — (1 — ) In(1 — x) est définie que | — oo; 1], donc (au moins) sur | — 1; 1[. On
a, pour tout z €] — 1; 1] :

fey)=1—-2z)ln(l—2)=—(1—=x Z—

+OO£C + n+1
N
=X/ 1 1 . < 1
o (_ﬁ—i_n—l)x :_x+;(n—1)n
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On peut considérer que ce dernier résultat constitue la réponse a la question posée. On peut aussi se
ramener précisément a une série entiere :

+oo
Vo €l - L1 flo) =) an”
n=0
0 sin=20
ou, pourtoutn € N: a, = —1 sin=1 Parlaregle de d Alembert: R = 1.
—(n—ll)n sin > 2.

d)Ona: X?-8X+15=(X-3)(X-5).

La fonction f : z — In (2? — 8z + 15) est définie sur | — oo; 3[U]5; +ool, donc (au moins) sur ] -
3; 3[. On a, pour tout = €] — 3; 3[ (en faisant attention a ne mettre des logarithmes que sur des
nombres > 0 ) :

f(x) =In((z = 3)(z - 5))
=In(3—z)+In(5 —2)

:1n3+1n<1—§>+1n5+1n(1—£>

z <> §%<—>

=1In15 +°° !

On peut considérer que ce dernier résultat constitue la réponse a la question posée. On peut aussi se
ramener précisément a une série entiere :

+oo
Vo €] —3;3), f(z)= Zanx”
n=0
ollag =Inl15eta, = —+ (35 + =) pour tout n > 1.
Onala,| ~ —= noté b, e, pour tout z € RTfixé :
bn n+1 3n
T _ n o] = n |z . |$_|
b (n+ 1)3n+! n+13 ne 3

On en déduit, d’apres la regle de d’ Alembert et le théoreme d’équivalence : R = 3.

Exercice 4

Trouver



solution

En notant, pour toutn € N, P, = [[,_, 3%,
onaP,>0et:InP, =37 2 n3= <ZZ=0 Qk—lf) In 3, donc :

+00 2k
InP, — ZE In3=¢e’ln3

k=0

puis, par continuité de I’exponentielle :

On conclut :

Exercice 5

2 2
Pn ee In3 — 30

noo

n k
. 2k >
lim | | 37 =3¢
noo

k=0

Soient ) | a,z", une série entiere, R son rayon de convergence.
.. < 5 2.n 2n
Déterminer les rayons de convergence des séries entieres » | a;z", > a,z°".

solution

1) Notons R’ le rayon de la série entiere > a?z".
On a, pour tout entier n et tout z € C :

-Si |z|z < R, alors

. 1 .
- Si|z|z > R, alors la suite (
bornée, d’ou |z| > R/.
On a montré :

d’ou :

et on conclut : R’ = R2.

1 n
o (1)

o (1))

— 0, donc |a2z"| — 0, d’ou: |z| < R.
noo noo

2. n|
a22"] = (

n
an, <|z]%> D n’est pas bornée, donc la suite (|aZ2"]), n’est pas
n

2] < R? = |z| < R

VZEC’{ 2| > R = |z| > R

R2<RetR*>R

37
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2) Notons R” le rayon de la série entiere y  a,z*"
On a, pour tout entier n et tout z € C :

- Si |2?| < R, alors a,, |22|" — 0, donc: 2] < R

- Si |22| > R, alors la suite (an (2%)"), n’est pas bornée, donc la suite (a,2"), n’est pas bornée,

dou: |z| > R".
/!
Onamontré:‘v’ze(jj{ ‘Z|<R2:>| <R .

d’ou:
2| > Rz = |z| > R,
R: <R'etR: > R’

et on conclut : R = Rz.

Exercice 6

Soient ) | a,z", une série entiere, R son rayon de convergence.

1
Montrer que R > 0 si et seulement si la suite <|an| 5) est majorée.

n=1

solution

1) Supposons 12 > 0.

I existe p € Rtel que 0 < p < R, par exemple : p = &.

Puisque |p| < R, la suite (a,p"),, est bornée. Il ex1ste donc C' € Ritel que : Vn > 1, |a,p"| <
d’ou :

1
Vn > 1,la,|" < =C*.
p

Comme Oz — 1, la suite (C%> est bornée.
noo n=>1

Il existe donc D € ]R+tel que Vn >1, C# <D
1
On aalors : Vn > 1, |an| =, ce qui montre que la suite <|an | 5) est majorée.

n=1

1 .
2) Réciproquement, supposons que la suite <|an\ n) est majorée.
n3l

1l existe donc M € Ritel que : Vn > 1, |an\ <M.

Onaalors: Vn > 1 lan| < M™.

Comme la série entiere ) M ”z" est de rayon 57 L (série géométrique), il en résulte que la série
entiere ) -, a,z" est de rayon > 5, donc de rayon supérieur strictement a 0 .

Exercice 7

On note, pour tout n € N* : a,, = >, k(k+n
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a) 1) Montrer que, pour tout n € N*, a,, existe.
2) Etablir :

1
VYn € NT,q, = - (Hgp,—q1 — Hy 1),

ol on a noté Hy = O et, pour tout n € N*, H,, = > +.

On pourra utiliser : H, =Inn+~v+ o (1), ot 7y est la constante d’Euler. 3) En déduire un équivalent
simple de a,, lorsque I’entier n tend Vrgﬁs I’infini.

b) On considere la série entiere Zn>1 a,x™, ou la variable x est réelle, et on note R son rayon de
convergence.

1) Déterminer R.

2) Quelles sont les natures des séries numériques » - a, B, > 1 ap(—R)"?

solution

a) 1) Pour n € N*fixé > 0, donc, par I’ exemple de Riemann ( 2 > 1) et le théoreme

~Y
» &( k+n) ~ k2
d’équivalence pour des séries a termes > 0, la série >, TR converge, a, = S e k(k oy existe.
2) Soitn € N*. On a, pour tout N >

1 1% -
/{;k+n_nk k‘+n

n

MZIMZ

1 1 N 1 N-+n
(Zi- Z) HZi3)
%((HN— — (Hyn — Hap1))

1

== [((1nN+7+N%O(1)) - Hn—1>

— ((In(N +n) +7+0(1)) = Han1)

N 1 1
+ E (HQn_l — Hn—l) + EO(1>

11
=—In
n N-+n

Pour n € N* fixé, en faisant tendre 1’entier NV vers I’infini, on obtient :

P SR AT
ap = i k:(k:—i—n) - n 2n—1 n—1) -

3)Onadonc: a, =1 (Hy,—1 — H,_1)

= ((n(2n ~ 1) +7+ 0 (1)) ~ (infn — 1)+ 7+ o(1))
=il (D) = tne oy o (1)

n n

In2 (1) ln2
= —4o0| — ~N —
n n) no n
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~ In2

b) 1) Puisque a,, >~ ==, et que la série entiere 2@1 % est de rayon 1, par théoreme d’équivalence,
le rayon R de la série entiere ) -, a,2" est: R = 1.
2) - Nature de la série de terme général a,, R" :

Ona:a,R"=a, ~ 1“72 donc, d’apres I’exemple de Riemann et le théoreme d’équivalence pour des
noo

séries a termes > 0, la série > -, a, R" diverge. - Nature de la série de terme général a,(—R)" :

Il s’agit de la série > _,(—1)"a,, puisque R = 1. Cette série est alternée, et a,, — 0, car
= noo

a, ~ ™2 Ona, pourtoutn > 1:

noo

+oo
1

k=n+1
+o0 1 +oo 1
< —— < ———— = Qn,
2 i S G

donc (ay),, est décroissante.
D’apres le TSCSA, on conclut que la série ), (—1)"a, converge.
Finalement, la série ), ., a,(—R)" converge.



Chapitre |

Séries de Fourier

Exercice 1
Soit f : R — R, 27w-périodique, paire, telle que, pour tout ¢ € [0; 7] :

fy=1si0<t< 2 f(H)=0sit="2

T
Z t) = —1s1i—<t<

a) Vérifier f € CM,; et calculer les coefficients de Fourier (trigonométriques) de f.
b) Etudier les convergences de la série de Fourier de f et préciser sa somme.

4413 4o : . +oo (1)P +0o0 1 +oo 1
¢) En déduire les sommes de séries suivantes : ) , T 2ap=0 EpT)% 2am—1 12"

solution

Il est clair que f est 27-périodique et continue par morceaux sur R donc f € CMo,, et les
coefficients de Fourier (trigonométriques) a,,, b,(n € N) de f existent.

Puisque f est paire,ona:Vn € Nt b, = 0.

On a, pour tout n € N, en utilisant la parité de f :

an, / f(t)cosnt dt = / f(t) cosnt dt
= — / : cosnt dt — / cos nt dt
N 0 %

On a donc ag = 0, et, pour toutn > 1:

2 ) /2 ) 4 T
an = — ([smn lo [sinnt]7 —sin (ng
On a donc, pour tout p € N :

A(=1)P

Qop = 0 et A2p4+1 = m

41
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b) Puisque f est 27-périodique et de classe C'! par morceaux, d’apres le théoréme de Dirichlet de
convergence simple, la série de Fourier de f converge simplement sur R et a pour somme la
régularisée f de f.

On a donc, pour toutt € R :

ft) = % (fE)+f (7)) = Z % cos(2p + 1)t

c) - En remplagant ¢ par O dans le résultat de b ), on obtient :

+00 “+o0o

4(=1)P —1)P
S A gone (3 ST
p=0

m(2p +1) w1 A

- Puisque f € CMs,, d’apres la formule de Parseval réelle, on a :

% 4 %Z (@ +8) = 5- | (oFa

+00 16 _ 1 _ +oo 1 _ x2
c’est-a-dire ici : pm0 PRI = L [Fdt=1,dou: pm0 I = 5
- Soit N € N. On a, en séparant les termes d’indices pairs, d’indices impairs :

N

_|_

n=1 p:l p=0 2p +

27 2 2
—~n 4 gl el (2p+1)
donc :
=1 1 X1 472 g2
— - -2 _ 0
— n?2 1- i (2p+1)2 38 6
Réponse :

Exercice 2

Soit f : R — R, 2w-périodique, impaire, telle que :
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a) Vérifier f € C M., et calculer les coefficients de Fourier (trigonométriques) de f.
b) Etudier les convergences de la série de Fourier de f et préciser sa somme.
¢) En déduire les sommes de séries suivantes :

“+00 —+00
1

1
pZ: (2p+1) an’ Z 2p—i— ZE

n=1

solution

Il est clair que f est 2w-périodique et continue par morceaux sur R (et méme, continue sur R ), donc
[ € CMas, etles coefficients de Fourier (trigonométriques) a,,, b,, (n € N) de f existent.
Puisque f est impaire, on a: Vn € N, a,, = 0. On a, pour tout n € NT, en utilisant I’imparité de f :

2 [T 2 [T
bn:—/ f(t)sinntdt:—/ f(t)sinnt dt

2 ) . T Jo
2 w/2 ™

= — / tsinntdt—l—/ (m —t)sinnt dt
n 0 /2
_ 2 /2 /2

u=m—1t— / tsinnt dt + / usin(nm — nu)du

T \Jo 0

w/2 /2
/ tsinnt dt — (—1)”/ usin nu du
0 0

w/2
(1+(=1)") / tsinnt dt
0

Il s’ensuit : Vp € NT, by, = 0, et, pour tout p € N, grice a une intégration par parties :

A 30

4 /2
b2p+1 = ;/ tsin(2p + 1)t dt
0

[_tsin(Zp + 1)15}”/2 N /”/2 cos(2p + 1)t gt
2p+1 0 0 2p+1
4 [sin(2p+ 1)t]™?  4(=1)

T o T(2p+1)?

2p+1

b) Puisque f est 27-périodique, de classe C' par morceaux sur R et continue sur R, d’apres le
théoreme de Dirichlet de convergence normale, la série de Fourier de f converge normalement (donc
uniformément, absolument, 51mplement) sur R et a pour somme f. On a donc :

VteR, f(t) = Z;"g WA(‘QP e sin(2p + 1)t. Remarque : La convergence normale résulte aussi de :

vpeN ViR, |1 (2p+ 1)t 1
) s | 74 aNo Sln -
P (2p+ 12 P T(2p + 1)
et de la convergence de la série numérique » >0 @ +1 -1z ¢) ® En remplagant ¢ par 7 dans le résultat
de b ), on obtient : donc : ;j’) (2p—1+1)2 — %,

- On a, pour tout NV € N*, en séparant les termes d’indices pairs, d’indices impairs :
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2N+1 1 N 1 N 1
Y = +)

2 Z 2 2
oot 022 H 2+l

D’ou, en faisant tendre I’entier N vers I’infini, et puisque les séries qui interviennent convergent :

X1 o1& 1 =
- = __|_ -
n? 4 p_; P’ ; (2p + 1)?

n=1

R 2 2 . N

dotn: Y L = =T Z;Ljf) (2p}r1)2 = 3% = .- Puisque f € CMy,, on a, d’apres la formule de
4

Parseval réelle :

c’est-a-dire ici :

™ ) _l 71'/22 B ™ Y
o ([Tra [ e-ora)
U=—1 —1t w/2 /2

_ (/0 t2dt—|—/0 u2du>

2 w/2 9 t3 /2 2
:—/ 2a==12] =L
T Jo T3], 12

L +oo 1 _on?n? _ ot . ye 1 . ye 1
dou:) G = 1612 = 967" Comme en 1), en séparant les termes d’indices pairs, d’indices

impairs et puisque les séries qui interviennent convergent, on a :

+o00 —+o0 —+o0
> =it
4 4 4
Snt =2t (2t 1)
donc :
*i 1 1 X1 1674 7t
_— = 1 = —— = —
Sent T 1-{(pr 1)t 1506 90
e 00 2 %s) 2
Réponse : Z;;O (QP}FI)Q =%, 2:1;1 # =&
+oo 4 +0o0 4
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Exercice 3

Soit f : R — R, t — |sint|.
a) Vérifier f € C M, et calculer les coefficients de Fourier (trigonométriques) de f.
b) Etudier les convergences de la série de Fourier de f et préciser sa somme.

. £ : L\ teo 1 +oo (=) +o00 1
¢) En déduire les sommes de séries suivantes : ) 1 =, ) | 1575 ) ey ErEEEyEL

solution

L’application f : ¢t — |sint| est m-périodique et continue par morceaux (car continue), donc
f € CM,, et les coefficients de Fourier (trigonométriques) a,,, b,(n € N) de f existent.
Comme f est paire,ona: Vn € Nt b, = 0.

On a, pour toutn € N :

2 2 ("
ap, = — ) cos 2nt dt = / sint cos 2nt dt
T T Jo

sin(2n + 1)t — sin(2n — 1)t)dt

J, o
)¢

T
1 [ cos(2n+1)t  cos(2n—1)t "
T 2n+1 2n—1 |,
1 4
T 2n—|—1 C2n—1 Cr(4n? —1)
Vn e N, a, =
o lut : o STy
neonei {VneN*,bn_O.

b) L application f est w-périodique, de classe C'' par morceaux sur R, continue sur R, donc, d’apres
le théoreme de Dirichlet de convergence normale, la série de Fourier de f converge normalement,
donc uniformément, absolument, simplement, sur R et a pour somme f. D’ou :

“+oo
VteR, |sint| :% + Z (ay, cos 2nt + b, sin 2nt)
n=1
+oo

2 4 ot
:——g ——————cos2n
0 7 (4n? — 1)
n=1

¢ ) - En remplagant ¢ par O dans le résultat de b ), on obtient :

:__Z 4n2—1

=1 1
24712—1:5

- En remplagant ¢ par 7 dans le résultat de b ), on obtient :
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oo CUM _m(2 1) _1_x

N L 2
d’otr : n=14n2—-1 =~ 4 \x

- Puisque f € C M, d’apres la formule de Parseval réelle :

a3 1~ 1 ["
0 2, 12 2
Doy @) -1 [ uwra
n=1
c’est-a-dire ici :
+o0o
1 1 16 1 [7
— 4= —2:—/ sin?t dt
T 242 (4n2 —1)° 7o
1 [7 1 in2t]" 1
=— [ (I —cos2nt)dt = — |t — o =—
27 Jy 2 2 |, 2

et on conclut :

. St 1 1 too (=" _ 1 _ =«
Réponse : Y % i =35, 0 111 =5 — 1

Exercice 4

Soit f : R — R, 27-périodique, impaire, telle que : Vt € [0; 7|, f(t) = t(m — ).

a) Vérifier f € C M., et calculer les coefficients de Fourier (trigonométriques) de f.
b) Etudier les convergences de la série de Fourier de f et préciser sa somme.

¢) En déduire les sommes de séries : S 7> (D too 1 oo 1

p=0 (2p+1)37 Lup=0 (2p+1)67 Lun=1 nb*

solution

a) Il est clair que f est 27-périodique (par définition) et continue par morceaux (et méme continue)
sur R, donc les coefficients de Fourier (trigonométriques) a,, b,(n € N) de f existent

De plus, f est impaire, donc : Vn € N, a,, = 0.

On a, pour tout n € N* :
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2 L[

b, = > o f(t)sinnt dt = - /_7r f(t)sinnt dt
A .

- —/ t(m —t)sinnt dt
0

™

9 AL ¢
:—([—t(w—t)cosn} —/ (—m +2t) 20 dt)
7T n oy Jo n

2 s

=—— [ (2t —m)cosntdt
™ J,
_ 2 ({(%_W)sinntr_/”finmﬁ dt)
™ no ], 0 n
4 T 4 [cosnt]™
=— sinnt dt = -——
m™m? J, ™ no |,
4= (=1
mn3
Vn e N, a, =0

On conclut : { b) Puisque f est 27-périodique et de classe C'* par

Vn € N* b, = 2200

™
morceaux et continue sur R (et méme de classe C' sur R ), d’apres le théoréme de convergence

normale de Dirichlet, la série de Fourier de f converge normalement, donc uniformément,
absolument, simplement, sur R et a pour somme f. On a donc :

+oo
VieR, f(t)= % + Z (ay, cosnt + by, sinnt)
n=1
+oo
4(1—(—-1)"
= Z—( (3 ) )sinnt
— ™m

En particulier :

41— (=D

YVt e [0;m], tim—1t)= ; —3 sin nt
¢) 1) En remplagant ¢ par 7 dans le résultat de 0 ), on obtient :

Y L
TS (0])

400 +oo

8 , T 8(—1)?

=3 e (e ) = 3

par m(2p+1) 2 par m(2p+1)

car les termes d’indices pairs sont tous nuls, d’ou :

S g
)
o (2p 1P 32

2) Puisque f est 2m-périodique et continue par morceaux sur R, on a, d’ apres la formule de Parseval :
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2 +0o
ay 1 2 2 1/ 2
— 4+ = b2) = — ) dt
4+2n:1(an+ W) =5 o)
) noté PM . noté SM
Ici:
1<X16(1— (- 328 1
Y LTS Ry
24~ m™n (i (2p+1)

car les termes d’indices pairs sont tous nuls, et :

2 J_ . s
1 [ 1[# tt 31"

= —/ (t4 o2t + t27r2) dt == |— — 21— + 72—
T Jo ™ 4 31

1 /n° 4 3 1 1 1 7t

= — ——2 _— 2— = 4 —_— — — = —

w(5 T 3) 7T(5 2+3) 30

32 +oo 1 ot )
On a donc : p=0 @pi1) = 30° d’ou
+o00 1 7.[.6

p; 2p+1)5 960

3) On a, pour tout NV € N, en séparant les termes d’indices pairs, d’indices impairs :

2N+1 1 N 1 N 1
R +
D s Gt ;
o nt =2 = (2p+1)
N N
1 1 1
=) =+
6 6 6
0~ p° = (2p+1)

d’ou, en faisant tendre I’entier NV vers ’infini, et puisque les séries qui interviennent convergent :

—+00

- 1n6:26zn6 Z 2p+1

et donc :
6

£ —2% par 2p+ T 63960 945
+oo (_1)p _7T3

; (2p+1)* 32
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